{"title":"(FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries","authors":"Junhai Wang, Huaqiu Huang, Chen Chen, Jiandong Zheng, Yaxian Cao, Sang Woo Joo, Jiarui Huang","doi":"10.1007/s11706-024-0683-y","DOIUrl":null,"url":null,"abstract":"<div><p>There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)<sub>2</sub>FeBO<sub>3</sub> nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)<sub>2</sub>FeBO<sub>3</sub> can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g<sup>−1</sup>, the initial discharging and charging specific capacities of the (FeO)<sub>2</sub>FeBO<sub>3</sub>@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g<sup>−1</sup>, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g<sup>−1</sup>, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)<sub>2</sub>FeBO<sub>3</sub> NPs is conducive to the performance improvement of Li–S batteries.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0683-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)2FeBO3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)2FeBO3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g−1, the initial discharging and charging specific capacities of the (FeO)2FeBO3@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g−1, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g−1, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)2FeBO3 NPs is conducive to the performance improvement of Li–S batteries.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.