One-Shot Learning of Surrogates in PDE-Constrained Optimization under Uncertainty

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Philipp A. Guth, Claudia Schillings, Simon Weissmann
{"title":"One-Shot Learning of Surrogates in PDE-Constrained Optimization under Uncertainty","authors":"Philipp A. Guth, Claudia Schillings, Simon Weissmann","doi":"10.1137/23m1553170","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 614-645, June 2024. <br/> Abstract.We propose a general framework for machine learning based optimization under uncertainty. Our approach replaces the complex forward model by a surrogate, which is learned simultaneously in a one-shot sense when solving the optimal control problem. Our approach relies on a reformulation of the problem as a penalized empirical risk minimization problem for which we provide a consistency analysis in terms of large data and increasing penalty parameter. To solve the resulting problem, we suggest a stochastic gradient method with adaptive control of the penalty parameter and prove convergence under suitable assumptions on the surrogate model. Numerical experiments illustrate the results for linear and nonlinear surrogate models.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1553170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 614-645, June 2024.
Abstract.We propose a general framework for machine learning based optimization under uncertainty. Our approach replaces the complex forward model by a surrogate, which is learned simultaneously in a one-shot sense when solving the optimal control problem. Our approach relies on a reformulation of the problem as a penalized empirical risk minimization problem for which we provide a consistency analysis in terms of large data and increasing penalty parameter. To solve the resulting problem, we suggest a stochastic gradient method with adaptive control of the penalty parameter and prove convergence under suitable assumptions on the surrogate model. Numerical experiments illustrate the results for linear and nonlinear surrogate models.
不确定性条件下 PDE 受限优化中代用物的一次性学习
SIAM/ASA 不确定性量化期刊》,第 12 卷,第 2 期,第 614-645 页,2024 年 6 月。 摘要:我们提出了一个基于机器学习的不确定性优化通用框架。我们的方法用代用模型取代了复杂的前向模型,在求解最优控制问题时,代用模型在一次学习的意义上被同时学习。我们的方法依赖于将问题重新表述为一个受惩罚的经验风险最小化问题,我们从大数据和增加惩罚参数的角度对该问题进行了一致性分析。为了解决由此产生的问题,我们提出了一种对惩罚参数进行自适应控制的随机梯度法,并证明了在代用模型的适当假设条件下的收敛性。数值实验说明了线性和非线性代用模型的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信