{"title":"A local approach to stability groups","authors":"Martin L. Newell, Marco Trombetti","doi":"10.1007/s10801-024-01345-8","DOIUrl":null,"url":null,"abstract":"<p>In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01345-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.