Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Juan Dávila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei
{"title":"Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System","authors":"Juan Dávila,&nbsp;Manuel del Pino,&nbsp;Jean Dolbeault,&nbsp;Monica Musso,&nbsp;Juncheng Wei","doi":"10.1007/s00205-024-02006-7","DOIUrl":null,"url":null,"abstract":"<div><p>Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system </p><div><figure><div><div><picture><img></picture></div></div></figure></div><p> We consider the critical mass case <span>\\(\\int _{{\\mathbb {R}}^2} u_0(x)\\, \\textrm{d}x = 8\\pi \\)</span>, which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function <span>\\(u_0^*\\)</span> with mass <span>\\(8\\pi \\)</span> such that for any initial condition <span>\\(u_0\\)</span> sufficiently close to <span>\\(u_0^*\\)</span> and mass <span>\\(8\\pi \\)</span>, the solution <i>u</i>(<i>x</i>, <i>t</i>) of (<span>\\(*\\)</span>) is globally defined and blows-up in infinite time. As <span>\\(t\\rightarrow +\\infty \\)</span> it has the approximate profile </p><div><div><span>$$\\begin{aligned} u(x,t) \\approx \\frac{1}{\\lambda ^2(t)} U\\left( \\frac{x-\\xi (t)}{\\lambda (t)} \\right) , \\quad U(y)= \\frac{8}{(1+|y|^2)^2}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\lambda (t) \\approx \\frac{c}{\\sqrt{\\log t}}\\)</span>, <span>\\(\\xi (t)\\rightarrow q\\)</span> for some <span>\\(c&gt;0\\)</span> and <span>\\(q\\in {\\mathbb {R}}^2\\)</span>. This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02006-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02006-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system

We consider the critical mass case \(\int _{{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi \), which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function \(u_0^*\) with mass \(8\pi \) such that for any initial condition \(u_0\) sufficiently close to \(u_0^*\) and mass \(8\pi \), the solution u(xt) of (\(*\)) is globally defined and blows-up in infinite time. As \(t\rightarrow +\infty \) it has the approximate profile

$$\begin{aligned} u(x,t) \approx \frac{1}{\lambda ^2(t)} U\left( \frac{x-\xi (t)}{\lambda (t)} \right) , \quad U(y)= \frac{8}{(1+|y|^2)^2}, \end{aligned}$$

where \(\lambda (t) \approx \frac{c}{\sqrt{\log t}}\), \(\xi (t)\rightarrow q\) for some \(c>0\) and \(q\in {\mathbb {R}}^2\). This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).

Abstract Image

Abstract Image

凯勒-西格尔系统中无限时间炸裂的存在性和稳定性
我们考虑临界质量情况(int _{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi \),它对应于有限时间膨胀和自相似扩散趋零之间的精确临界点。我们找到一个质量为\(8\pi \)的径向函数\(u_0^*\),对于任何足够接近\(u_0^*\)的初始条件和质量为\(8\pi \)的初始条件,(\(*\))的解u(x, t)是全局定义的,并且在无限时间内炸毁。由于(t\rightarrow +\infty \)它有近似的轮廓 $$\begin{aligned} u(x,t) \approx \frac{1}\{lambda ^2(t)} U\left( \frac{x-\xi (t)}\{lambda (t)} \right) 、\quad U(y)= \frac{8}{(1+|y|^2)^2}, \end{aligned}$$where \(\lambda (t) \approx \frac{c}{\sqrt\{log t}}\), \(\xi (t)\rightarrow q\) for some \(c>;0) and\(q\in {\mathbb {R}}^2\).这一结果肯定地回答了 Ghoul 和 Masmoudi(Commun Pure Appl Math 71:1957-2015, 2018)中提出的非径向稳定性猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信