Juan Dávila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei
{"title":"Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System","authors":"Juan Dávila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei","doi":"10.1007/s00205-024-02006-7","DOIUrl":null,"url":null,"abstract":"<div><p>Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system </p><div><figure><div><div><picture><img></picture></div></div></figure></div><p> We consider the critical mass case <span>\\(\\int _{{\\mathbb {R}}^2} u_0(x)\\, \\textrm{d}x = 8\\pi \\)</span>, which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function <span>\\(u_0^*\\)</span> with mass <span>\\(8\\pi \\)</span> such that for any initial condition <span>\\(u_0\\)</span> sufficiently close to <span>\\(u_0^*\\)</span> and mass <span>\\(8\\pi \\)</span>, the solution <i>u</i>(<i>x</i>, <i>t</i>) of (<span>\\(*\\)</span>) is globally defined and blows-up in infinite time. As <span>\\(t\\rightarrow +\\infty \\)</span> it has the approximate profile </p><div><div><span>$$\\begin{aligned} u(x,t) \\approx \\frac{1}{\\lambda ^2(t)} U\\left( \\frac{x-\\xi (t)}{\\lambda (t)} \\right) , \\quad U(y)= \\frac{8}{(1+|y|^2)^2}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\lambda (t) \\approx \\frac{c}{\\sqrt{\\log t}}\\)</span>, <span>\\(\\xi (t)\\rightarrow q\\)</span> for some <span>\\(c>0\\)</span> and <span>\\(q\\in {\\mathbb {R}}^2\\)</span>. This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02006-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02006-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel system
We consider the critical mass case \(\int _{{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi \), which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function \(u_0^*\) with mass \(8\pi \) such that for any initial condition \(u_0\) sufficiently close to \(u_0^*\) and mass \(8\pi \), the solution u(x, t) of (\(*\)) is globally defined and blows-up in infinite time. As \(t\rightarrow +\infty \) it has the approximate profile
where \(\lambda (t) \approx \frac{c}{\sqrt{\log t}}\), \(\xi (t)\rightarrow q\) for some \(c>0\) and \(q\in {\mathbb {R}}^2\). This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).