Zikai Gao, Zhihui Gu, Mengjie Bao, Jiani Xu, Tingting Xiao, Jun Chen, Peng Ma, Congming Ma
{"title":"Molecular design and energetic properties of 4H, 8H difurazano [3,4-b; 3′, 4′-e] pyrazine derivatives","authors":"Zikai Gao, Zhihui Gu, Mengjie Bao, Jiani Xu, Tingting Xiao, Jun Chen, Peng Ma, Congming Ma","doi":"10.1007/s00214-024-03128-7","DOIUrl":null,"url":null,"abstract":"<p>Forty-five “4H, 8H difurazano[3,4-b;3′,4′-e] pyrazine (DFP) based energetic derivatives” were designed, and their heat of formation, stability, detonation performance, and impact sensitivity properties were comprehensively studied using density functional theory. The changes in these properties caused by changes in the type and quantity of substituents were analyzed. The results showed that the density range of DFP based energetic derivatives was 1.62–2.02 g/cm, the detonation velocity range was 7.02–9.18 km/s, and the detonation pressure range was 20.99–38.72 GPa. The introduction of –NH<sub>2</sub> and –NHNH<sub>2</sub> groups can effectively reduce the chemical reactivity of the compounds, while the introduction of –NHNH<sub>2</sub> groups can efficiently improve the heat of formation and detonation performance of the compounds and reduce the sensitivity of the derivatives. Compounds <b>B8</b> (4H, 8H bis ([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizine-4,8-diyl nitrate), <b>C8</b> (8-(trinitromethyl)-4H, 8H bis ([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizin-4-yl nitrate), <b>E4</b> (<i>N</i>-(8-hydrazine-4H, 8H bis ([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizin-4-yl) nitrate, <b>E8</b> (8-(nitroamino)-4H, 8H bis([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizin-4-yl nitrate) can be used as candidates for high-energy density materials.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03128-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Forty-five “4H, 8H difurazano[3,4-b;3′,4′-e] pyrazine (DFP) based energetic derivatives” were designed, and their heat of formation, stability, detonation performance, and impact sensitivity properties were comprehensively studied using density functional theory. The changes in these properties caused by changes in the type and quantity of substituents were analyzed. The results showed that the density range of DFP based energetic derivatives was 1.62–2.02 g/cm, the detonation velocity range was 7.02–9.18 km/s, and the detonation pressure range was 20.99–38.72 GPa. The introduction of –NH2 and –NHNH2 groups can effectively reduce the chemical reactivity of the compounds, while the introduction of –NHNH2 groups can efficiently improve the heat of formation and detonation performance of the compounds and reduce the sensitivity of the derivatives. Compounds B8 (4H, 8H bis ([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizine-4,8-diyl nitrate), C8 (8-(trinitromethyl)-4H, 8H bis ([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizin-4-yl nitrate), E4 (N-(8-hydrazine-4H, 8H bis ([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizin-4-yl) nitrate, E8 (8-(nitroamino)-4H, 8H bis([1,2,5] oxadiazolo) [3,4-b:3′,4′-e] pyrizin-4-yl nitrate) can be used as candidates for high-energy density materials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.