{"title":"Insight into the Structure of Asphaltene after Its Disaggregation by Chemical Processing","authors":"Shengchao Wei, Dan Lu, Zhilin Yao, Lijun Zhu, Changlong Yin, Daohong Xia","doi":"10.1134/S0965544124030113","DOIUrl":null,"url":null,"abstract":"<p>In order to understand the structure of asphaltene after its disaggregating by chemical processing, a comprehensive study for exploring the structural changes of asphaltene after acylation as a case of chemical processing was conducted. Functional groups, crystal parameters, hydrogen types, and micromorphology of acylated asphaltenes were analyzed by FT-IR, XPS, XRD, <sup>1</sup>H NMR, SEM and IFM (inverted fluorescence microscope) methods. Additionally, fluorescence spectroscopy methods were performed to analyze the effect of acylation on the aggregation ability of asphaltene. Experimental results indicated that the C=O double bond was enhanced and the content of O–C=O was increased on the surface of acylated asphaltene. The number of stacking layers and the aggregate size of asphaltene decreased obviously after acylation. Fluorescence spectral analysis showed that the critical aggregation concentration of acylated asphaltenes increased compared to the raw asphaltenes. These results indicate that acylation reaction can disaggregate asphaltenes and hinder their re-aggregation in a solution. The disaggregation effect of asphaltene acylation can be attributed to the weakening of a hydrogen bonding and enhancement of a steric hindrance in the asphaltene molecule. This study provided the further understanding of the structural changes of asphaltene after the chemical treatment.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 3","pages":"346 - 356"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124030113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
In order to understand the structure of asphaltene after its disaggregating by chemical processing, a comprehensive study for exploring the structural changes of asphaltene after acylation as a case of chemical processing was conducted. Functional groups, crystal parameters, hydrogen types, and micromorphology of acylated asphaltenes were analyzed by FT-IR, XPS, XRD, 1H NMR, SEM and IFM (inverted fluorescence microscope) methods. Additionally, fluorescence spectroscopy methods were performed to analyze the effect of acylation on the aggregation ability of asphaltene. Experimental results indicated that the C=O double bond was enhanced and the content of O–C=O was increased on the surface of acylated asphaltene. The number of stacking layers and the aggregate size of asphaltene decreased obviously after acylation. Fluorescence spectral analysis showed that the critical aggregation concentration of acylated asphaltenes increased compared to the raw asphaltenes. These results indicate that acylation reaction can disaggregate asphaltenes and hinder their re-aggregation in a solution. The disaggregation effect of asphaltene acylation can be attributed to the weakening of a hydrogen bonding and enhancement of a steric hindrance in the asphaltene molecule. This study provided the further understanding of the structural changes of asphaltene after the chemical treatment.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.