Partial data inverse problems for magnetic Schrödinger operators on conformally transversally anisotropic manifolds

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Salem Selim, Lili Yan
{"title":"Partial data inverse problems for magnetic Schrödinger operators on conformally transversally anisotropic manifolds","authors":"Salem Selim, Lili Yan","doi":"10.3233/asy-241909","DOIUrl":null,"url":null,"abstract":"We study inverse boundary problems for the magnetic Schrödinger operator with Hölder continuous magnetic potentials and continuous electric potentials on a conformally transversally anisotropic Riemannian manifold of dimension n⩾3 with connected boundary. A global uniqueness result is established for magnetic fields and electric potentials from the partial Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"72 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241909","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study inverse boundary problems for the magnetic Schrödinger operator with Hölder continuous magnetic potentials and continuous electric potentials on a conformally transversally anisotropic Riemannian manifold of dimension n⩾3 with connected boundary. A global uniqueness result is established for magnetic fields and electric potentials from the partial Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective.
共形横向各向异性流形上磁薛定谔算子的部分数据逆问题
我们研究了在维数为 n⩾3 且边界相连的保角横向各向异性黎曼流形上具有荷尔德连续磁势和连续电势的磁薛定谔算子的逆边界问题。只要横向流形上的大地 X 射线变换是注入式的,就能根据流形边界上的部分考奇数据建立磁场和电势的全局唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信