Zijun Zheng, Gang Pang, Matthias Ehrhardt, Baiyili Liu
{"title":"A fast second-order absorbing boundary condition for the linearized Benjamin-Bona-Mahony equation","authors":"Zijun Zheng, Gang Pang, Matthias Ehrhardt, Baiyili Liu","doi":"10.1007/s11075-024-01864-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a fully discrete finite difference scheme with efficient convolution of artificial boundary conditions for solving the Cauchy problem associated with the one-dimensional linearized Benjamin-Bona-Mahony equation. The scheme utilizes the Padé expansion of the square root function in the complex plane to implement the fast convolution, resulting in significant reduction of computational costs involved in the time convolution process. Moreover, the introduction of a constant damping term in the governing equations allows for convergence analysis under specific conditions. The theoretical analysis is complemented by numerical examples that illustrate the performance of the proposed numerical method.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"27 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01864-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a fully discrete finite difference scheme with efficient convolution of artificial boundary conditions for solving the Cauchy problem associated with the one-dimensional linearized Benjamin-Bona-Mahony equation. The scheme utilizes the Padé expansion of the square root function in the complex plane to implement the fast convolution, resulting in significant reduction of computational costs involved in the time convolution process. Moreover, the introduction of a constant damping term in the governing equations allows for convergence analysis under specific conditions. The theoretical analysis is complemented by numerical examples that illustrate the performance of the proposed numerical method.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.