{"title":"Screening of [18F]Florbetazine for Aβ Plaques and a Head-to-Head Comparison Study with [11C]Pittsburgh Compound-B ([11C]PiB) in Human Subjects","authors":"Yuying Li, Xiaojun Zhang, Hailong Zhao, Yan Wang, Dandan Zhang, Xiaoming Wang, Ruilin Dong, Xiao-xin Yan, Jing Wu, Yanying Sui, Jinming Zhang* and Mengchao Cui*, ","doi":"10.1021/acsptsci.4c00149","DOIUrl":null,"url":null,"abstract":"<p >Positron emission tomography (PET) imaging of amyloid-β (Aβ) has emerged as a crucial strategy for early diagnosis and monitoring of therapeutic advancements targeting Aβ. In our previous first-in-human study, we identified that [<sup>18</sup>F]Florbetazine ([<sup>18</sup>F]<b>92</b>), featuring a diaryl-azine scaffold, exhibits higher cortical uptake in Alzheimer’s disease (AD) patients compared to healthy controls (HC). Building upon these promising findings, this study aimed to characterize the diagnostic potential of [<sup>18</sup>F]<b>92</b> and its dimethylamino-modified tracer [<sup>18</sup>F]<b>91</b> and further compare them with the benchmark [<sup>11</sup>C]PiB in the same cohort of AD patients and age-matched HC subjects. The cortical accumulation of these tracers was evident, with no significant radioactivity retention observed in the cortex of HC subjects, consistent with [<sup>11</sup>C]PiB images (correlation coefficient of 0.9125 and 0.7883 between [<sup>18</sup>F]Florbetazine/[<sup>18</sup>F]<b>91</b> and [<sup>11</sup>C]PiB, respectively). Additionally, quantified data revealed higher standardized uptake value ratios (SUVR) (with the cerebellum as the reference region) of [<sup>18</sup>F]Florbetazine/[<sup>18</sup>F]<b>91</b> in AD patients compared to the HC group ([<sup>18</sup>F]Florbetazine: 1.49 vs 1.16; [<sup>18</sup>F]<b>91</b>: 1.33 vs 1.20). Notably, [<sup>18</sup>F]Florbetazine exhibited less nonspecific bindings in myelin-rich regions, compared to the dimethylamino-substituted [<sup>18</sup>F]<b>91</b>, akin to [<sup>11</sup>C]PiB. Overall, this study suggests that [<sup>18</sup>F]Florbetazine displays superior characteristics to [<sup>18</sup>F]<b>91</b> in identifying Aβ pathology in AD. Furthermore, the close agreement between the uptakes in nontarget regions for [<sup>18</sup>F]Florbetazine and [<sup>11</sup>C]PiB in this head-to-head comparison study underscores its suitability for both clinical and research applications.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2054–2062"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Positron emission tomography (PET) imaging of amyloid-β (Aβ) has emerged as a crucial strategy for early diagnosis and monitoring of therapeutic advancements targeting Aβ. In our previous first-in-human study, we identified that [18F]Florbetazine ([18F]92), featuring a diaryl-azine scaffold, exhibits higher cortical uptake in Alzheimer’s disease (AD) patients compared to healthy controls (HC). Building upon these promising findings, this study aimed to characterize the diagnostic potential of [18F]92 and its dimethylamino-modified tracer [18F]91 and further compare them with the benchmark [11C]PiB in the same cohort of AD patients and age-matched HC subjects. The cortical accumulation of these tracers was evident, with no significant radioactivity retention observed in the cortex of HC subjects, consistent with [11C]PiB images (correlation coefficient of 0.9125 and 0.7883 between [18F]Florbetazine/[18F]91 and [11C]PiB, respectively). Additionally, quantified data revealed higher standardized uptake value ratios (SUVR) (with the cerebellum as the reference region) of [18F]Florbetazine/[18F]91 in AD patients compared to the HC group ([18F]Florbetazine: 1.49 vs 1.16; [18F]91: 1.33 vs 1.20). Notably, [18F]Florbetazine exhibited less nonspecific bindings in myelin-rich regions, compared to the dimethylamino-substituted [18F]91, akin to [11C]PiB. Overall, this study suggests that [18F]Florbetazine displays superior characteristics to [18F]91 in identifying Aβ pathology in AD. Furthermore, the close agreement between the uptakes in nontarget regions for [18F]Florbetazine and [11C]PiB in this head-to-head comparison study underscores its suitability for both clinical and research applications.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.