Wenxu Du, Dawei Lv, Zhihui Zhang, Munira Raji, Cuiyu Song, Luojing Wang, Zekuan Li, Kai Cao, Ruoxiang Yuan, Yuzhuang Sun
{"title":"Orbital-scale climate dynamics impacts on Gzhelian peatland wildfire activity in the Ordos Basin","authors":"Wenxu Du, Dawei Lv, Zhihui Zhang, Munira Raji, Cuiyu Song, Luojing Wang, Zekuan Li, Kai Cao, Ruoxiang Yuan, Yuzhuang Sun","doi":"10.5194/cp-2024-42","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The Carboniferous, an important coal-forming period in geological history, was characterized by extensive vegetation and high oxygen levels. Numerous wildfire evidence suggests that high frequency of wildfire occurred at that time, specifically in peatlands. However, the control mechanisms for changes in wildfire activity in peatlands during this period are still not clearly understood. In this study, evidence from the Gzhelian in the Ordos Basin, such as the inertinite/vitrinite (I/V) ratio, indicated the existence of different frequencies of wildfire activity at that time. The CaO/MgO and CaO/MgO • Al<sub>2</sub>O<sub>3</sub> climate indicators revealed that high-frequency wildfires mainly occur in warm and humid climates. Based on former age constraints, we deduced that orbital cycles (long eccentricity) controlled the climate influence on peatland wildfires during the Gzhelian. When eccentricity was high, abundant sunshine and frequent rainfall led to warmer and more humid peatlands. The latter environments were more favourable for vegetation development, leading to increased fuel loads, which in turn led to more frequent wildfires. Moreover, the Gzhelian global wildfire records, showed that evidence of wildfire during this period was mainly located in areas with abundant tropical vegetation, supporting the view that wildfire activity during this period was mainly controlled by the fuel loads. Although Hg could be produced by peatland wildfires, but our results show that Hg was mainly from frequent volcanic activity during this period.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"410 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-2024-42","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The Carboniferous, an important coal-forming period in geological history, was characterized by extensive vegetation and high oxygen levels. Numerous wildfire evidence suggests that high frequency of wildfire occurred at that time, specifically in peatlands. However, the control mechanisms for changes in wildfire activity in peatlands during this period are still not clearly understood. In this study, evidence from the Gzhelian in the Ordos Basin, such as the inertinite/vitrinite (I/V) ratio, indicated the existence of different frequencies of wildfire activity at that time. The CaO/MgO and CaO/MgO • Al2O3 climate indicators revealed that high-frequency wildfires mainly occur in warm and humid climates. Based on former age constraints, we deduced that orbital cycles (long eccentricity) controlled the climate influence on peatland wildfires during the Gzhelian. When eccentricity was high, abundant sunshine and frequent rainfall led to warmer and more humid peatlands. The latter environments were more favourable for vegetation development, leading to increased fuel loads, which in turn led to more frequent wildfires. Moreover, the Gzhelian global wildfire records, showed that evidence of wildfire during this period was mainly located in areas with abundant tropical vegetation, supporting the view that wildfire activity during this period was mainly controlled by the fuel loads. Although Hg could be produced by peatland wildfires, but our results show that Hg was mainly from frequent volcanic activity during this period.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.