{"title":"A multi path routing protocol with efficient energy consumption in IoT applications real time traffic","authors":"Radwan S. Abujassar","doi":"10.1186/s13638-024-02377-1","DOIUrl":null,"url":null,"abstract":"<p>The extensive utilization of IoT applications leads to the aggregation of a substantial volume of data, presenting a crucial challenge in terms of data routing within these networks. RPL intentionally surpasses the limitations sometimes observed in low-power and lossy networks, which are particularly prevalent in IoT networks. The RPL protocol is designed specifically for static networks that do not involve mobility or topological changes. The RPL protocol guarantees continuous connectivity between nodes and mitigates the risk of data loss in stationary IoT applications that do not involve mobility or alterations in network configuration. The article utilizes a mobility aid technology known as network performance stability using the intelligent routing protocol (nPSIR), which expands upon RPL. The Mobility Support Entity (nPSIR) facilitates the displacement of all nodes, with the exception of the root node, and ensures uninterrupted connection during mobility. Moreover, it deals with the situation where there is a physical barrier between two interconnected nodes in a changing environment. In order to achieve this objective, it employs a dynamic trickle timer that operates within two distinct ranges. Furthermore, it utilizes a neighbor link quality table, a mechanism for selecting the most beneficial parent node in the event of migration, a measure of confidence, the identification of crucial regions, and a blacklist. Multiple simulations validate that nPSIR effectively decreases hand-off delay and improves packet delivery, despite the minor drawbacks of increased signaling costs and power consumption. The delivery ratio decreases the quantity of lost data packets and surpasses both RPL as a responsive protocol and mRPL as a proactive protocol in relation to mobility.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"35 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02377-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The extensive utilization of IoT applications leads to the aggregation of a substantial volume of data, presenting a crucial challenge in terms of data routing within these networks. RPL intentionally surpasses the limitations sometimes observed in low-power and lossy networks, which are particularly prevalent in IoT networks. The RPL protocol is designed specifically for static networks that do not involve mobility or topological changes. The RPL protocol guarantees continuous connectivity between nodes and mitigates the risk of data loss in stationary IoT applications that do not involve mobility or alterations in network configuration. The article utilizes a mobility aid technology known as network performance stability using the intelligent routing protocol (nPSIR), which expands upon RPL. The Mobility Support Entity (nPSIR) facilitates the displacement of all nodes, with the exception of the root node, and ensures uninterrupted connection during mobility. Moreover, it deals with the situation where there is a physical barrier between two interconnected nodes in a changing environment. In order to achieve this objective, it employs a dynamic trickle timer that operates within two distinct ranges. Furthermore, it utilizes a neighbor link quality table, a mechanism for selecting the most beneficial parent node in the event of migration, a measure of confidence, the identification of crucial regions, and a blacklist. Multiple simulations validate that nPSIR effectively decreases hand-off delay and improves packet delivery, despite the minor drawbacks of increased signaling costs and power consumption. The delivery ratio decreases the quantity of lost data packets and surpasses both RPL as a responsive protocol and mRPL as a proactive protocol in relation to mobility.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.