Isolation of Regular Graphs and k-Chromatic Graphs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peter Borg
{"title":"Isolation of Regular Graphs and k-Chromatic Graphs","authors":"Peter Borg","doi":"10.1007/s00009-024-02680-7","DOIUrl":null,"url":null,"abstract":"<p>Given a set <span>\\({\\mathcal {F}}\\)</span> of graphs, we call a copy of a graph in <span>\\({\\mathcal {F}}\\)</span> an <span>\\({\\mathcal {F}}\\)</span>-graph. The <span>\\({\\mathcal {F}}\\)</span>-isolation number of a graph <i>G</i>, denoted by <span>\\(\\iota (G,{\\mathcal {F}})\\)</span>, is the size of a smallest set <i>D</i> of vertices of <i>G</i> such that the closed neighborhood of <i>D</i> intersects the vertex sets of the <span>\\({\\mathcal {F}}\\)</span>-graphs contained by <i>G</i> (equivalently, <span>\\(G - N[D]\\)</span> contains no <span>\\({\\mathcal {F}}\\)</span>-graph). Thus, <span>\\(\\iota (G,\\{K_1\\})\\)</span> is the domination number of <i>G</i>. For any integer <span>\\(k \\ge 1\\)</span>, let <span>\\({\\mathcal {F}}_{1,k}\\)</span> be the set of regular graphs of degree at least <span>\\(k-1\\)</span>, let <span>\\({\\mathcal {F}}_{2,k}\\)</span> be the set of graphs whose chromatic number is at least <i>k</i>, and let <span>\\({\\mathcal {F}}_{3,k}\\)</span> be the union of <span>\\({\\mathcal {F}}_{1,k}\\)</span> and <span>\\({\\mathcal {F}}_{2,k}\\)</span>. Thus, <i>k</i>-cliques are members of both <span>\\({\\mathcal {F}}_{1,k}\\)</span> and <span>\\({\\mathcal {F}}_{2,k}\\)</span>. We prove that for each <span>\\(i \\in \\{1, 2, 3\\}\\)</span>, <span>\\(\\frac{m+1}{{k \\atopwithdelims ()2} + 2}\\)</span> is a best possible upper bound on <span>\\(\\iota (G, {\\mathcal {F}}_{i,k})\\)</span> for connected <i>m</i>-edge graphs <i>G</i> that are not <i>k</i>-cliques. The bound is attained by infinitely many (non-isomorphic) graphs. The proof of the bound depends on determining the graphs attaining the bound. This appears to be a new feature in the literature on isolation. Among the result’s consequences are a sharp bound of Fenech, Kaemawichanurat, and the present author on the <i>k</i>-clique isolation number and a sharp bound on the cycle isolation number.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02680-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set \({\mathcal {F}}\) of graphs, we call a copy of a graph in \({\mathcal {F}}\) an \({\mathcal {F}}\)-graph. The \({\mathcal {F}}\)-isolation number of a graph G, denoted by \(\iota (G,{\mathcal {F}})\), is the size of a smallest set D of vertices of G such that the closed neighborhood of D intersects the vertex sets of the \({\mathcal {F}}\)-graphs contained by G (equivalently, \(G - N[D]\) contains no \({\mathcal {F}}\)-graph). Thus, \(\iota (G,\{K_1\})\) is the domination number of G. For any integer \(k \ge 1\), let \({\mathcal {F}}_{1,k}\) be the set of regular graphs of degree at least \(k-1\), let \({\mathcal {F}}_{2,k}\) be the set of graphs whose chromatic number is at least k, and let \({\mathcal {F}}_{3,k}\) be the union of \({\mathcal {F}}_{1,k}\) and \({\mathcal {F}}_{2,k}\). Thus, k-cliques are members of both \({\mathcal {F}}_{1,k}\) and \({\mathcal {F}}_{2,k}\). We prove that for each \(i \in \{1, 2, 3\}\), \(\frac{m+1}{{k \atopwithdelims ()2} + 2}\) is a best possible upper bound on \(\iota (G, {\mathcal {F}}_{i,k})\) for connected m-edge graphs G that are not k-cliques. The bound is attained by infinitely many (non-isomorphic) graphs. The proof of the bound depends on determining the graphs attaining the bound. This appears to be a new feature in the literature on isolation. Among the result’s consequences are a sharp bound of Fenech, Kaemawichanurat, and the present author on the k-clique isolation number and a sharp bound on the cycle isolation number.

正则图和 k 色度图的隔离
给定一个图集\({\mathcal {F}}\),我们把\({\mathcal {F}}\)中一个图的副本称为\({\mathcal {F}}\)-图。图 G 的隔离数用 \(\iota (G,{\mathcal {F}})\ 表示、是 G 的最小顶点集 D 的大小,这样的 D 的封闭邻域与 G 所包含的 \({\mathcal {F}}) -图的顶点集相交(等价地, \(G - N[D]\) 不包含任何 \({\mathcal {F}}) -图)。因此,(\iota (G,\{K_1\})\) 是 G 的支配数。对于任意整数 \(kge 1\), 让 \({\mathcal {F}}_{1,k}\) 是度数至少为 \(k-1\) 的规则图的集合, 让 \({\mathcal {F}}_{2、让 \({\mathcal {F}_{2, k}\) 是色度数至少为 k 的图的集合,让 \({\mathcal {F}_{3,k}\) 是 \({\mathcal {F}_{1,k}\) 和 \({\mathcal {F}_{2,k}\) 的联合。)因此,k-cliques 是 \({\mathcal {F}}_{1,k}\) 和\({\mathcal {F}}_{2,k}\) 的成员。我们证明,对于每一个(i in \{1, 2, 3\}\), \(\frac{m+1}{k \atopwithdelims ()2}\) 都是最佳方案。+ 2}\) 是连通的 m 边图 G 不是 k-cliques 时 \(\iota (G, {\mathcal {F}}_{i,k})\) 的最佳上限。无限多的(非同构)图都能达到这个界限。界值的证明取决于确定达到界值的图。这似乎是孤立性文献中的一个新特征。该结果的结果包括 Fenech、Kaemawichanurat 和本文作者关于 k-clique 隔离数的一个尖锐界值,以及关于循环隔离数的一个尖锐界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信