Arnaud Debussche, Ruoyuan Liu, Nikolay Tzvetkov, Nicola Visciglia
{"title":"Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space","authors":"Arnaud Debussche, Ruoyuan Liu, Nikolay Tzvetkov, Nicola Visciglia","doi":"10.1007/s00440-024-01288-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the nonlinear Schrödinger equation with multiplicative spatial white noise and an arbitrary polynomial nonlinearity on the two-dimensional full space domain. We prove global well-posedness by using a gauge-transform introduced by Hairer and Labbé (Electron Commun Probab 20(43):11, 2015) and constructing the solution as a limit of solutions to a family of approximating equations. This paper extends a previous result by Debussche and Martin (Nonlinearity 32(4):1147–1174, 2019) with a sub-quadratic nonlinearity.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"27 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01288-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the nonlinear Schrödinger equation with multiplicative spatial white noise and an arbitrary polynomial nonlinearity on the two-dimensional full space domain. We prove global well-posedness by using a gauge-transform introduced by Hairer and Labbé (Electron Commun Probab 20(43):11, 2015) and constructing the solution as a limit of solutions to a family of approximating equations. This paper extends a previous result by Debussche and Martin (Nonlinearity 32(4):1147–1174, 2019) with a sub-quadratic nonlinearity.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.