Extensively Not P-Bi-Immune promiseBQP-Complete Languages

Andrew Jackson
{"title":"Extensively Not P-Bi-Immune promiseBQP-Complete Languages","authors":"Andrew Jackson","doi":"arxiv-2406.16764","DOIUrl":null,"url":null,"abstract":"In this paper, I first establish -- via methods other than the\nGottesman-Knill theorem -- the existence of an infinite set of instances of\nsimulating a quantum circuit to decide a decision problem that can be simulated\nclassically. I then examine under what restrictions on quantum circuits the\nexistence of infinitely many classically simulable instances persists. There\nturns out to be a vast number of such restrictions, and any combination of\nthose found can be applied at the same time without eliminating the infinite\nset of classically simulable instances. Further analysis of the tools used in\nthis then shows there exists a language that every (promise) BQP language is\none-one reducible to. This language is also not P-bi-immune under very many\npromises.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, I first establish -- via methods other than the Gottesman-Knill theorem -- the existence of an infinite set of instances of simulating a quantum circuit to decide a decision problem that can be simulated classically. I then examine under what restrictions on quantum circuits the existence of infinitely many classically simulable instances persists. There turns out to be a vast number of such restrictions, and any combination of those found can be applied at the same time without eliminating the infinite set of classically simulable instances. Further analysis of the tools used in this then shows there exists a language that every (promise) BQP language is one-one reducible to. This language is also not P-bi-immune under very many promises.
广泛的非 Pi-Immune promiseBQP-Complete 语言
在本文中,我首先通过戈特曼-克尼尔定理以外的方法,证明了存在无限套模拟量子电路的实例,以决定一个可以经典模拟的决策问题。然后,我研究了量子电路在哪些限制条件下存在无限多的经典可模拟实例。结果发现有大量这样的限制,而且任何这些限制的组合都可以同时应用,而不会消除经典可模拟实例的无限集。对其中所用工具的进一步分析表明,存在一种语言,每一种(承诺)BQP 语言都是一一可还原的。这种语言在许诺非常多的情况下也不是 P-bi-immune 语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信