On the approximability of graph visibility problems

Davide Bilò, Alessia Di Fonso, Gabriele Di Stefano, Stefano Leucci
{"title":"On the approximability of graph visibility problems","authors":"Davide Bilò, Alessia Di Fonso, Gabriele Di Stefano, Stefano Leucci","doi":"arxiv-2407.00409","DOIUrl":null,"url":null,"abstract":"Visibility problems have been investigated for a long time under different\nassumptions as they pose challenging combinatorial problems and are connected\nto robot navigation problems. The mutual-visibility problem in a graph $G$ of\n$n$ vertices asks to find the largest set of vertices $X\\subseteq V(G)$, also\ncalled $\\mu$-set, such that for any two vertices $u,v\\in X$, there is a\nshortest $u,v$-path $P$ where all internal vertices of $P$ are not in $X$. This\nmeans that $u$ and $v$ are visible w.r.t. $X$. Variations of this problem are\nknown as total, outer, and dual mutual-visibility problems, depending on the\nvisibility property of vertices inside and/or outside $X$. The\nmutual-visibility problem and all its variations are known to be\n$\\mathsf{NP}$-complete on graphs of diameter $4$. In this paper, we design a polynomial-time algorithm that finds a $\\mu$-set\nwith size $\\Omega\\left( \\sqrt{n/ \\overline{D}} \\right)$, where $\\overline D$ is\nthe average distance between any two vertices of $G$. Moreover, we show\ninapproximability results for all visibility problems on graphs of diameter $2$\nand strengthen the inapproximability ratios for graphs of diameter $3$ or\nlarger. More precisely, for graphs of diameter at least $3$ and for every\nconstant $\\varepsilon > 0$, we show that mutual-visibility and dual\nmutual-visibility problems are not approximable within a factor of\n$n^{1/3-\\varepsilon}$, while outer and total mutual-visibility problems are not\napproximable within a factor of $n^{1/2 - \\varepsilon}$, unless\n$\\mathsf{P}=\\mathsf{NP}$. Furthermore we study the relationship between the mutual-visibility number\nand the general position number in which no three distinct vertices $u,v,w$ of\n$X$ belong to any shortest path of $G$.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visibility problems have been investigated for a long time under different assumptions as they pose challenging combinatorial problems and are connected to robot navigation problems. The mutual-visibility problem in a graph $G$ of $n$ vertices asks to find the largest set of vertices $X\subseteq V(G)$, also called $\mu$-set, such that for any two vertices $u,v\in X$, there is a shortest $u,v$-path $P$ where all internal vertices of $P$ are not in $X$. This means that $u$ and $v$ are visible w.r.t. $X$. Variations of this problem are known as total, outer, and dual mutual-visibility problems, depending on the visibility property of vertices inside and/or outside $X$. The mutual-visibility problem and all its variations are known to be $\mathsf{NP}$-complete on graphs of diameter $4$. In this paper, we design a polynomial-time algorithm that finds a $\mu$-set with size $\Omega\left( \sqrt{n/ \overline{D}} \right)$, where $\overline D$ is the average distance between any two vertices of $G$. Moreover, we show inapproximability results for all visibility problems on graphs of diameter $2$ and strengthen the inapproximability ratios for graphs of diameter $3$ or larger. More precisely, for graphs of diameter at least $3$ and for every constant $\varepsilon > 0$, we show that mutual-visibility and dual mutual-visibility problems are not approximable within a factor of $n^{1/3-\varepsilon}$, while outer and total mutual-visibility problems are not approximable within a factor of $n^{1/2 - \varepsilon}$, unless $\mathsf{P}=\mathsf{NP}$. Furthermore we study the relationship between the mutual-visibility number and the general position number in which no three distinct vertices $u,v,w$ of $X$ belong to any shortest path of $G$.
论图形可见性问题的近似性
长期以来,人们一直在研究不同假设条件下的可见性问题,因为它们提出了具有挑战性的组合问题,并与机器人导航问题相关联。在一个有 n 个顶点的图 $G 中,互可见性问题要求找到最大的顶点集合 $Xsubseteq V(G)$,也称为 $\mu$-set,这样对于 X$ 中的任意两个顶点 $u,v$,都有最短的 $u,v$-路径 $P$,其中 $P$ 的所有内部顶点都不在 $X$ 中。这意味着 $u$ 和 $v$ 对 $X$ 是可见的。根据顶点在 $X$ 内部和/或外部的可见性,这个问题的变种被称为总互见问题、外互见问题和对偶互见问题。众所周知,在直径为 $4$ 的图上,互见问题及其所有变体都是$\mathsf{NP}$-完全的。在本文中,我们设计了一种多项式时间算法,可以找到一个大小为 $\Omega\left( \sqrt{n/ \overline{D}} \right)$ 的 $\mu$ 集,其中 $\overline D$ 是 $G$ 任意两个顶点之间的平均距离。此外,我们还展示了直径为 2$ 的图的所有可见性问题的可近似性结果,并加强了直径为 3$ 或更大的图的不可近似性比率。更准确地说,对于直径至少为 3$且常数 $\varepsilon > 0$ 的图,我们证明了互可见性和对偶互可见性问题在 $n^{1/3-\varepsilon}$ 的因子内不可近似,而外部互可见性和总互可见性问题在 $n^{1/2 - \varepsilon}$ 的因子内不可近似,除非 $\mathsf{P}=\mathsf{NP}$。此外,我们还研究了互可见度数与一般位置数之间的关系,在一般位置数中,没有三个不同的顶点 $u,v,w$ 属于 $G$ 的任何最短路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信