Development of a semi-empirical bond strength model for multi-pass hot roll bonding based on the characterizations using the truncated-cone experiment

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Alexander Krämer, Zhao Liu, Marco Teller, Holger Aretz, Kai Karhausen, David Bailly, Gerhard Hirt, Johannes Lohmar
{"title":"Development of a semi-empirical bond strength model for multi-pass hot roll bonding based on the characterizations using the truncated-cone experiment","authors":"Alexander Krämer,&nbsp;Zhao Liu,&nbsp;Marco Teller,&nbsp;Holger Aretz,&nbsp;Kai Karhausen,&nbsp;David Bailly,&nbsp;Gerhard Hirt,&nbsp;Johannes Lohmar","doi":"10.1007/s12289-024-01839-7","DOIUrl":null,"url":null,"abstract":"<div><p>With special reference to the modelling of hot roll bonding, new experimental procedures to measure the resulting bond strength for a combination of AA6016 and AA8079 aluminum alloys at elevated temperatures and various strain rates using laboratory tests are proposed. The data acquired by this procedure is used to developed and calibrate a semi-empirical model, which accurately predicts the resulting bond strength within an error of 2 MPa on average. It is shown that the bond strength generally follows the flow stress regarding the dependency on temperature and strain. Additionally, inter-pass times can increase the bond strength, provided that both a suitable temperature and timespan are realized. Contrary, multiple consecutive height reductions were found to reduce the bond strength.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01839-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01839-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

With special reference to the modelling of hot roll bonding, new experimental procedures to measure the resulting bond strength for a combination of AA6016 and AA8079 aluminum alloys at elevated temperatures and various strain rates using laboratory tests are proposed. The data acquired by this procedure is used to developed and calibrate a semi-empirical model, which accurately predicts the resulting bond strength within an error of 2 MPa on average. It is shown that the bond strength generally follows the flow stress regarding the dependency on temperature and strain. Additionally, inter-pass times can increase the bond strength, provided that both a suitable temperature and timespan are realized. Contrary, multiple consecutive height reductions were found to reduce the bond strength.

Abstract Image

根据截顶锥实验的特征,开发多道热轧辊粘接的半经验粘接强度模型
特别针对热轧粘接建模,提出了新的实验程序,利用实验室测试测量 AA6016 和 AA8079 铝合金组合在高温和各种应变速率下产生的粘接强度。通过该程序获得的数据用于开发和校准半经验模型,该模型可准确预测所产生的粘接强度,平均误差不超过 2 兆帕。结果表明,在温度和应变的相关性方面,粘接强度通常与流动应力一致。此外,在温度和时间都合适的情况下,间隔时间可以提高粘接强度。相反,多次连续降低高度会降低粘接强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信