Remarks on analytical solutions to compressible Navier–Stokes equations with free boundaries

IF 2.1 2区 数学 Q1 MATHEMATICS
Jianwei Dong, Manwai Yuen
{"title":"Remarks on analytical solutions to compressible Navier–Stokes equations with free boundaries","authors":"Jianwei Dong, Manwai Yuen","doi":"10.1515/ans-2023-0146","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the free boundary problem of the radially symmetric compressible Navier–Stokes equations with viscosity coefficients of the form <jats:italic>μ</jats:italic>(<jats:italic>ρ</jats:italic>) = <jats:italic>ρ</jats:italic> <jats:sup> <jats:italic>θ</jats:italic> </jats:sup>, <jats:italic>λ</jats:italic>(<jats:italic>ρ</jats:italic>) = (<jats:italic>θ</jats:italic> − 1)<jats:italic>ρ</jats:italic> <jats:sup> <jats:italic>θ</jats:italic> </jats:sup> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{N}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0146_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>. Under the continuous density boundary condition, we correct some errors in (Z. H. Guo and Z. P. Xin, “Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries,” <jats:italic>J. Differ. Equ.</jats:italic>, vol. 253, no. 1, pp. 1–19, 2012) for <jats:italic>N</jats:italic> = 3, <jats:italic>θ</jats:italic> = <jats:italic>γ</jats:italic> &gt; 1 and improve the spreading rate of the free boundary, where <jats:italic>γ</jats:italic> is the adiabatic exponent. Moreover, we construct an analytical solution for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>θ</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $\\theta =\\frac{2}{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0146_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:italic>N</jats:italic> = 3 and <jats:italic>γ</jats:italic> &gt; 1, and we prove that the free boundary grows linearly in time by using some new techniques. When <jats:italic>θ</jats:italic> = 1, under the stress free boundary condition, we construct some analytical solutions for <jats:italic>N</jats:italic> = 2, <jats:italic>γ</jats:italic> = 2 and <jats:italic>N</jats:italic> = 3, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>γ</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>5</m:mn> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $\\gamma =\\frac{5}{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0146_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula>, respectively.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0146","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the free boundary problem of the radially symmetric compressible Navier–Stokes equations with viscosity coefficients of the form μ(ρ) = ρ θ , λ(ρ) = (θ − 1)ρ θ in R N ${\mathbb{R}}^{N}$ . Under the continuous density boundary condition, we correct some errors in (Z. H. Guo and Z. P. Xin, “Analytical solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients and free boundaries,” J. Differ. Equ., vol. 253, no. 1, pp. 1–19, 2012) for N = 3, θ = γ > 1 and improve the spreading rate of the free boundary, where γ is the adiabatic exponent. Moreover, we construct an analytical solution for θ = 2 3 $\theta =\frac{2}{3}$ , N = 3 and γ > 1, and we prove that the free boundary grows linearly in time by using some new techniques. When θ = 1, under the stress free boundary condition, we construct some analytical solutions for N = 2, γ = 2 and N = 3, γ = 5 3 $\gamma =\frac{5}{3}$ , respectively.
关于有自由边界的可压缩 Navier-Stokes 方程解析解的评论
本文考虑了 R N $\{mathbb{R}}^{N}$ 中粘度系数为 μ(ρ) = ρ θ , λ(ρ) = (θ - 1)ρ θ 的径向对称可压缩纳维-斯托克斯方程的自由边界问题。在连续密度边界条件下,我们纠正了 (Z. H. Guo and Z. P. Xin, "Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries," J. Differ. Equ.Equ., vol. 253, no. 1, pp.此外,我们还构建了 θ = 2 3 $\theta =\frac{2}{3}$ , N = 3 和 γ > 1 的解析解,并利用一些新技术证明了自由边界随时间线性增长。当 θ = 1 时,在无应力边界条件下,我们分别为 N = 2, γ = 2 和 N = 3, γ = 5 3 $\gamma =\frac{5}{3}$ 构造了一些解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信