Symmetric Splendor: Unraveling Universally Closest Refinements and Fisher Market Equilibrium through Density-Friendly Decomposition

T-H. Hubert Chan, Quan Xue
{"title":"Symmetric Splendor: Unraveling Universally Closest Refinements and Fisher Market Equilibrium through Density-Friendly Decomposition","authors":"T-H. Hubert Chan, Quan Xue","doi":"arxiv-2406.17964","DOIUrl":null,"url":null,"abstract":"We present a comprehensive framework that unifies several research areas\nwithin the context of vertex-weighted bipartite graphs, providing deeper\ninsights and improved solutions. The fundamental solution concept for each\nproblem involves refinement, where vertex weights on one side are distributed\namong incident edges. The primary objective is to identify a refinement pair\nwith specific optimality conditions that can be verified locally. This\nframework connects existing and new problems that are traditionally studied in\ndifferent contexts. We explore three main problems: (1) density-friendly hypergraph\ndecomposition, (2) universally closest distribution refinements problem, and\n(3) symmetric Fisher Market equilibrium. Our framework presents a symmetric view of density-friendly hypergraph\ndecomposition, wherein hyperedges and nodes play symmetric roles. This\nsymmetric decomposition serves as a tool for deriving precise characterizations\nof optimal solutions for other problems and enables the application of\nalgorithms from one problem to another.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive framework that unifies several research areas within the context of vertex-weighted bipartite graphs, providing deeper insights and improved solutions. The fundamental solution concept for each problem involves refinement, where vertex weights on one side are distributed among incident edges. The primary objective is to identify a refinement pair with specific optimality conditions that can be verified locally. This framework connects existing and new problems that are traditionally studied in different contexts. We explore three main problems: (1) density-friendly hypergraph decomposition, (2) universally closest distribution refinements problem, and (3) symmetric Fisher Market equilibrium. Our framework presents a symmetric view of density-friendly hypergraph decomposition, wherein hyperedges and nodes play symmetric roles. This symmetric decomposition serves as a tool for deriving precise characterizations of optimal solutions for other problems and enables the application of algorithms from one problem to another.
对称辉煌:通过密度友好分解揭示普遍最接近精炼和费雪市场均衡
我们提出了一个综合框架,在顶点加权二叉图的背景下统一了多个研究领域,提供了更深入的见解和更好的解决方案。每个问题的基本求解概念都涉及细化,即把一边的顶点权重分配给附带的边。主要目标是找出具有特定最优条件的细化对,并能在本地验证。这个框架将传统上研究的现有问题和新问题联系起来。我们探讨了三个主要问题:(1) 密度友好超图分解;(2) 普遍最接近分布细化问题;(3) 对称费雪市场均衡。我们的框架提出了密度友好超图分解的对称观点,其中超门和节点扮演对称角色。这种对称分解可作为一种工具,用于推导其他问题最优解的精确特征,并使算法从一个问题应用到另一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信