Real Roots of Hypergeometric Polynomials via Finite Free Convolution

Pub Date : 2024-06-21 DOI:10.1093/imrn/rnae120
Andrei Martínez-Finkelshtein, Rafael Morales, Daniel Perales
{"title":"Real Roots of Hypergeometric Polynomials via Finite Free Convolution","authors":"Andrei Martínez-Finkelshtein, Rafael Morales, Daniel Perales","doi":"10.1093/imrn/rnae120","DOIUrl":null,"url":null,"abstract":"We examine two binary operations on the set of algebraic polynomials, known as multiplicative and additive finite free convolutions, specifically in the context of hypergeometric polynomials. We show that the representation of a hypergeometric polynomial as a finite free convolution of more elementary blocks, combined with the preservation of the real zeros and interlacing by the free convolutions, is an effective tool that allows us to analyze when all roots of a specific hypergeometric polynomial are real. Moreover, the known limit behavior of finite free convolutions allows us to write the asymptotic zero distribution of some hypergeometric polynomials as free convolutions of Marchenko–Pastur, reciprocal Marchenko–Pastur, and free beta laws, which has an independent interest within free probability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine two binary operations on the set of algebraic polynomials, known as multiplicative and additive finite free convolutions, specifically in the context of hypergeometric polynomials. We show that the representation of a hypergeometric polynomial as a finite free convolution of more elementary blocks, combined with the preservation of the real zeros and interlacing by the free convolutions, is an effective tool that allows us to analyze when all roots of a specific hypergeometric polynomial are real. Moreover, the known limit behavior of finite free convolutions allows us to write the asymptotic zero distribution of some hypergeometric polynomials as free convolutions of Marchenko–Pastur, reciprocal Marchenko–Pastur, and free beta laws, which has an independent interest within free probability.
分享
查看原文
通过有限自由卷积求超几何多项式的实根
我们研究了代数多项式集合上的两种二元运算,即有限自由卷积的乘法运算和加法运算,特别是在超几何多项式的背景下。我们证明,将超几何多项式表示为更多基本块的有限自由卷积,再加上保留实零和自由卷积的交错,是一种有效的工具,使我们能够分析特定超几何多项式的所有根都是实数的情况。此外,有限自由卷积的已知极限行为允许我们将某些超几何多项式的渐近零分布写成马琴科-帕斯特尔、倒数马琴科-帕斯特尔和自由贝塔定律的自由卷积,这在自由概率中具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信