{"title":"Counting Arcs of the Same Type","authors":"Marie Trin","doi":"10.1093/imrn/rnae143","DOIUrl":null,"url":null,"abstract":"We prove a general counting result for arcs of the same type in compact surfaces. We also count infinite arcs in cusped surfaces and arcs in orbifolds. These theorems are derived from a result that ensures the convergence of certain measures on the space of geodesic currents.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"27 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae143","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a general counting result for arcs of the same type in compact surfaces. We also count infinite arcs in cusped surfaces and arcs in orbifolds. These theorems are derived from a result that ensures the convergence of certain measures on the space of geodesic currents.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.