Thomas Schneider, Alexandre Beiderwellen Bedrikow, Karsten Stahl
{"title":"Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation","authors":"Thomas Schneider, Alexandre Beiderwellen Bedrikow, Karsten Stahl","doi":"10.1186/s40323-024-00268-0","DOIUrl":null,"url":null,"abstract":"This research paper presents a comprehensive methodology for analyzing wet clutches, focusing on their intricate thermomechanical behavior. The study combines advanced encoding techniques, such as Principal Component Analysis (PCA), with metamodeling, to efficiently predict pressure and temperature distributions on friction surfaces. By parametrically varying input parameters and utilizing Finite Element Method (FEM) simulations, we generate a dataset comprising 200 simulations, divided into training and testing sets. Our findings indicate that PCA encoding effectively reduces data dimensionality while preserving essential information. Notably, the study reveals that only a few PCA components are required for accurate encoding: two components for temperature distribution and pressure, and three components for heat flux density. We compare various metamodeling techniques, including Linear Regression, Decision Trees, Random Forest, Support Vector Regression, Gaussian Processes, and Neural Networks. The results underscore the varying performance of these techniques, with Random Forest excelling in mechanical metamodeling and Neural Networks demonstrating superiority in thermal metamodeling.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-024-00268-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper presents a comprehensive methodology for analyzing wet clutches, focusing on their intricate thermomechanical behavior. The study combines advanced encoding techniques, such as Principal Component Analysis (PCA), with metamodeling, to efficiently predict pressure and temperature distributions on friction surfaces. By parametrically varying input parameters and utilizing Finite Element Method (FEM) simulations, we generate a dataset comprising 200 simulations, divided into training and testing sets. Our findings indicate that PCA encoding effectively reduces data dimensionality while preserving essential information. Notably, the study reveals that only a few PCA components are required for accurate encoding: two components for temperature distribution and pressure, and three components for heat flux density. We compare various metamodeling techniques, including Linear Regression, Decision Trees, Random Forest, Support Vector Regression, Gaussian Processes, and Neural Networks. The results underscore the varying performance of these techniques, with Random Forest excelling in mechanical metamodeling and Neural Networks demonstrating superiority in thermal metamodeling.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.