Diameter of Compact Riemann Surfaces

Pub Date : 2024-06-27 DOI:10.1007/s40315-024-00546-3
Huck Stepanyants, Alan Beardon, Jeremy Paton, Dmitri Krioukov
{"title":"Diameter of Compact Riemann Surfaces","authors":"Huck Stepanyants, Alan Beardon, Jeremy Paton, Dmitri Krioukov","doi":"10.1007/s40315-024-00546-3","DOIUrl":null,"url":null,"abstract":"<p>Diameter is one of the most basic properties of a geometric object, while Riemann surfaces are one of the most basic geometric objects. Surprisingly, the diameter of compact Riemann surfaces is known exactly only for the sphere and the torus. For higher genuses, only very general but loose upper and lower bounds are available. The problem of calculating the diameter exactly has been intractable since there is no simple expression for the distance between a pair of points on a high-genus surface. Here we prove that the diameters of a class of simple Riemann surfaces known as <i>generalized Bolza surfaces</i> of any genus greater than 1 are equal to the radii of their fundamental polygons. This is the first exact result for the diameter of a compact hyperbolic manifold.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00546-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diameter is one of the most basic properties of a geometric object, while Riemann surfaces are one of the most basic geometric objects. Surprisingly, the diameter of compact Riemann surfaces is known exactly only for the sphere and the torus. For higher genuses, only very general but loose upper and lower bounds are available. The problem of calculating the diameter exactly has been intractable since there is no simple expression for the distance between a pair of points on a high-genus surface. Here we prove that the diameters of a class of simple Riemann surfaces known as generalized Bolza surfaces of any genus greater than 1 are equal to the radii of their fundamental polygons. This is the first exact result for the diameter of a compact hyperbolic manifold.

Abstract Image

分享
查看原文
紧凑黎曼曲面的直径
直径是几何物体最基本的属性之一,而黎曼曲面则是最基本的几何物体之一。令人惊讶的是,只有球面和环面的紧凑黎曼曲面的直径是精确已知的。对于更高的属面,只有非常宽泛但松散的上下限。由于高属面上一对点之间的距离没有简单的表达式,因此精确计算直径的问题一直难以解决。在这里,我们证明了一类被称为广义波尔萨曲面的简单黎曼曲面的直径等于其基本多边形的半径,且任何属都大于 1。这是第一个关于紧凑双曲流形直径的精确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信