On the Poincaré Inequality on Open Sets in $$\mathbb {R}^n$$

IF 0.6 4区 数学 Q3 MATHEMATICS
A.-K. Gallagher
{"title":"On the Poincaré Inequality on Open Sets in $$\\mathbb {R}^n$$","authors":"A.-K. Gallagher","doi":"10.1007/s40315-024-00550-7","DOIUrl":null,"url":null,"abstract":"<p>We show that the Poincaré inequality holds on an open set <span>\\(D\\subset \\mathbb {R}^n\\)</span> if and only if <i>D</i> admits a smooth, bounded function whose Laplacian has a positive lower bound on <i>D</i>. Moreover, we prove that the existence of such a bounded, strictly subharmonic function on <i>D</i> is equivalent to the finiteness of the strict inradius of <i>D</i> measured with respect to the Newtonian capacity. We also obtain a sharp upper bound, in terms of this notion of inradius, for the smallest eigenvalue of the Dirichlet–Laplacian.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"85 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00550-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the Poincaré inequality holds on an open set \(D\subset \mathbb {R}^n\) if and only if D admits a smooth, bounded function whose Laplacian has a positive lower bound on D. Moreover, we prove that the existence of such a bounded, strictly subharmonic function on D is equivalent to the finiteness of the strict inradius of D measured with respect to the Newtonian capacity. We also obtain a sharp upper bound, in terms of this notion of inradius, for the smallest eigenvalue of the Dirichlet–Laplacian.

论 $$\mathbb {R}^n$$ 中开放集上的 Poincaré 不等式
此外,我们还证明,D 上存在这样一个有界的、严格的次谐函数等同于以牛顿容量衡量的 D 的严格半径的有限性。我们还根据这个有界半径的概念,得到了 Dirichlet-Laplacian 最小特征值的尖锐上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信