Risk Measures beyond Frictionless Markets

IF 1.4 4区 经济学 Q3 BUSINESS, FINANCE
Maria Arduca, Cosimo Munari
{"title":"Risk Measures beyond Frictionless Markets","authors":"Maria Arduca, Cosimo Munari","doi":"10.1137/22m1540090","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 2, Page 537-570, June 2024. <br/> Abstract.We develop a general theory of risk measures to determine the optimal amount of capital to raise and invest in a portfolio of reference traded securities in order to meet a prespecified regulatory requirement. The distinguishing feature of our approach is that we embed portfolio constraints and transaction costs into the securities market. As a consequence, the property of translation invariance, which plays a key role in the classical theory, ceases to hold. We provide a comprehensive analysis of relevant properties, such as star shapedness, positive homogeneity, convexity, quasiconvexity, subadditivity, and lower semicontinuity. In addition, we establish dual representations for convex and quasiconvex risk measures. In the convex case, the absence of a special kind of arbitrage opportunity allows one to obtain dual representations in terms of pricing rules that respect market bid-ask spreads and assign a strictly positive price to each nonzero position in the regulator’s acceptance set.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/22m1540090","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Financial Mathematics, Volume 15, Issue 2, Page 537-570, June 2024.
Abstract.We develop a general theory of risk measures to determine the optimal amount of capital to raise and invest in a portfolio of reference traded securities in order to meet a prespecified regulatory requirement. The distinguishing feature of our approach is that we embed portfolio constraints and transaction costs into the securities market. As a consequence, the property of translation invariance, which plays a key role in the classical theory, ceases to hold. We provide a comprehensive analysis of relevant properties, such as star shapedness, positive homogeneity, convexity, quasiconvexity, subadditivity, and lower semicontinuity. In addition, we establish dual representations for convex and quasiconvex risk measures. In the convex case, the absence of a special kind of arbitrage opportunity allows one to obtain dual representations in terms of pricing rules that respect market bid-ask spreads and assign a strictly positive price to each nonzero position in the regulator’s acceptance set.
无摩擦市场之外的风险措施
SIAM 金融数学期刊》第 15 卷第 2 期第 537-570 页,2024 年 6 月。 摘要.我们发展了风险度量的一般理论,以确定为满足预先规定的监管要求而筹集并投资于参考交易证券组合的最优资本量。我们的方法的显著特点是将投资组合约束和交易成本嵌入证券市场。因此,在经典理论中起关键作用的平移不变性属性不再成立。我们全面分析了相关性质,如星形性、正同质性、凸性、准凸性、次加性和低半连续性。此外,我们还建立了凸风险度量和准凸风险度量的对偶表示。在凸的情况下,由于不存在一种特殊的套利机会,我们可以通过定价规则获得双重表示,即尊重市场买卖价差,并为监管者接受集中的每个非零头寸分配一个严格的正价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.30
自引率
10.00%
发文量
52
期刊介绍: SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信