Brahim Adnane, Younes Moqine, Aziz Khribach, Abdelghani El Houri, Rachid Houça, El Bouâzzaoui Choubabi, Abdelhadi Belouad
{"title":"Dynamics of Quantum Correlation in a Two-qutrit Heisenberg XXZ Model with Heitler-London and Dzyaloshinskii-Moriya Couplings","authors":"Brahim Adnane, Younes Moqine, Aziz Khribach, Abdelghani El Houri, Rachid Houça, El Bouâzzaoui Choubabi, Abdelhadi Belouad","doi":"10.1002/andp.202400086","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the dynamics of quantum coherence and entanglement in the spin-1 Heisenberg XXZ model. Particularly, the effects of the Heitler-London (HL) coupling and the Dzyaloshinskii-Moriya (DM) interaction are examined. By utilizing tools from quantum information theory, the concept of quantum correlated coherence and negativity are explored. The results show intrinsic decoherence leads to a decay of both correlated coherence and negativity. Interestingly, it is found that a small value of the Dzyaloshinskii-Moriya interaction can significantly enhance coherence and entanglement. Various factors influence the system dynamics, including the initial state, anisotropy parameter, and the coupling distance between spins. It is shown that, by fixing the anisotropy parameter, the isotropic Heisenberg models XX and XXX can be easily recovered. Ultimately, the findings highlight that the system maintains a coherent temporal evolution despite decoherence.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the dynamics of quantum coherence and entanglement in the spin-1 Heisenberg XXZ model. Particularly, the effects of the Heitler-London (HL) coupling and the Dzyaloshinskii-Moriya (DM) interaction are examined. By utilizing tools from quantum information theory, the concept of quantum correlated coherence and negativity are explored. The results show intrinsic decoherence leads to a decay of both correlated coherence and negativity. Interestingly, it is found that a small value of the Dzyaloshinskii-Moriya interaction can significantly enhance coherence and entanglement. Various factors influence the system dynamics, including the initial state, anisotropy parameter, and the coupling distance between spins. It is shown that, by fixing the anisotropy parameter, the isotropic Heisenberg models XX and XXX can be easily recovered. Ultimately, the findings highlight that the system maintains a coherent temporal evolution despite decoherence.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.