{"title":"Bounded-memory adjusted scores estimation in generalized linear models with large data sets","authors":"Patrick Zietkiewicz, Ioannis Kosmidis","doi":"10.1007/s11222-024-10447-z","DOIUrl":null,"url":null,"abstract":"<p>The widespread use of maximum Jeffreys’-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (Biometrika 108:71–82, 2021. https://doi.org/10.1093/biomet/asaa052), who show that the resulting estimates are always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically as a proportion of the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing <i>O</i>(<i>n</i>) quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. Both procedures can also be readily adapted to fit generalized linear models when distinct parts of the data is stored across different sites and, due to privacy concerns, cannot be fully transferred across sites. We assess the procedures through a real-data application with millions of observations.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10447-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of maximum Jeffreys’-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (Biometrika 108:71–82, 2021. https://doi.org/10.1093/biomet/asaa052), who show that the resulting estimates are always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically as a proportion of the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing O(n) quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. Both procedures can also be readily adapted to fit generalized linear models when distinct parts of the data is stored across different sites and, due to privacy concerns, cannot be fully transferred across sites. We assess the procedures through a real-data application with millions of observations.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.