{"title":"Generalized kinetic theory of coarse-grained systems. I. Partial equilibrium and Markov approximations","authors":"Bernard Gaveau, Michel Moreau","doi":"10.1186/s13662-024-03810-x","DOIUrl":null,"url":null,"abstract":"<p>The general kinetic theory of coarse-grained systems is presented in the abstract formalism of communication theory developed by Shannon and Weaver, Khinchin and Kolmogorov. The martingale theory shows that, under reasonable, general hypotheses, coarse-grained systems can be approximated by generalized Markov systems. For mixing systems, the Kolmogorov entropy production can be defined for nonstationary processes as Kolmogorov defined it for stationary processes.</p>","PeriodicalId":49245,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-024-03810-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The general kinetic theory of coarse-grained systems is presented in the abstract formalism of communication theory developed by Shannon and Weaver, Khinchin and Kolmogorov. The martingale theory shows that, under reasonable, general hypotheses, coarse-grained systems can be approximated by generalized Markov systems. For mixing systems, the Kolmogorov entropy production can be defined for nonstationary processes as Kolmogorov defined it for stationary processes.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.