Patrick A. Levasseur, Julian Aherne, Nathan Basiliko, Shaun A. Watmough
{"title":"Organic matter, carbon, and nitrogen relationships of regreened forest soils in an industrially impacted landscape","authors":"Patrick A. Levasseur, Julian Aherne, Nathan Basiliko, Shaun A. Watmough","doi":"10.1071/sr24063","DOIUrl":null,"url":null,"abstract":"<strong> Context</strong><p>Soil organic matter (SOM) is largely composed of carbon (C) and nitrogen (N), the proportions of which often change with soil depth. The relationships between SOM, C, and N in forest soils can be greatly altered in degraded landscapes and understanding these relationships is integral for successful forest restoration planning.</p><strong> Aims</strong><p>The current study investigated SOM, C, and N relationships in highly degraded forest soils by depth following regreening (one-time application of soil amendments and afforestation). Additionally, the use of standard C:OM ratios (which are commonly used to estimate soil C) were assessed.</p><strong> Methods</strong><p>The SOM, C, and N were measured at five different depths, at nine sites, ranging in time since regreening treatment applications across one of the world’s largest regreening programmes in the City of Greater Sudbury, Canada.</p><strong> Key results</strong><p>The C:OM and C:N ratios decreased with soil depth while N:OM increased. The C and N were significantly correlated with SOM at all depths (excluding the L horizon). The C:OM ratio was lower than standard values and did not change between 16 and 41 years since the application of 10 Mg ha<sup>−1</sup> of dolomitic limestone.</p><strong> Conclusions</strong><p>Despite massive soil degradation, SOM, C, and N relationships over soil depth at the regreening sites are consistent with unimpacted forest soils. Applying commonly used C:OM ratios drastically overestimated soil C pools, especially at lower depths.</p><strong> Implications</strong><p>Even in the most degraded landscapes, restoration can improve soil properties. Standard C:OM ratios should be used with caution.</p>","PeriodicalId":21818,"journal":{"name":"Soil Research","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/sr24063","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Soil organic matter (SOM) is largely composed of carbon (C) and nitrogen (N), the proportions of which often change with soil depth. The relationships between SOM, C, and N in forest soils can be greatly altered in degraded landscapes and understanding these relationships is integral for successful forest restoration planning.
Aims
The current study investigated SOM, C, and N relationships in highly degraded forest soils by depth following regreening (one-time application of soil amendments and afforestation). Additionally, the use of standard C:OM ratios (which are commonly used to estimate soil C) were assessed.
Methods
The SOM, C, and N were measured at five different depths, at nine sites, ranging in time since regreening treatment applications across one of the world’s largest regreening programmes in the City of Greater Sudbury, Canada.
Key results
The C:OM and C:N ratios decreased with soil depth while N:OM increased. The C and N were significantly correlated with SOM at all depths (excluding the L horizon). The C:OM ratio was lower than standard values and did not change between 16 and 41 years since the application of 10 Mg ha−1 of dolomitic limestone.
Conclusions
Despite massive soil degradation, SOM, C, and N relationships over soil depth at the regreening sites are consistent with unimpacted forest soils. Applying commonly used C:OM ratios drastically overestimated soil C pools, especially at lower depths.
Implications
Even in the most degraded landscapes, restoration can improve soil properties. Standard C:OM ratios should be used with caution.
期刊介绍:
Soil Research (formerly known as Australian Journal of Soil Research) is an international journal that aims to rapidly publish high-quality, novel research about fundamental and applied aspects of soil science. As well as publishing in traditional aspects of soil biology, soil physics and soil chemistry across terrestrial ecosystems, the journal welcomes manuscripts dealing with wider interactions of soils with the environment.
Soil Research is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.