Linear complementary pairs of codes over a finite non-commutative Frobenius ring

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sanjit Bhowmick, Xiusheng Liu
{"title":"Linear complementary pairs of codes over a finite non-commutative Frobenius ring","authors":"Sanjit Bhowmick, Xiusheng Liu","doi":"10.1007/s12190-024-02161-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study linear complementary pairs (LCP) of codes over finite non-commutative local rings. We further provide a necessary and sufficient condition for a pair of codes (<i>C</i>, <i>D</i>) to be LCP of codes over finite non-commutative Frobenius rings. The minimum distances <i>d</i>(<i>C</i>) and <span>\\(d(D^\\perp )\\)</span> are defined as the security parameter for an LCP of codes (<i>C</i>, <i>D</i>). It was recently demonstrated that if <i>C</i> and <i>D</i> are both 2-sided LCP of group codes over a finite commutative Frobenius rings, <span>\\(D^\\perp \\)</span> and <i>C</i> are permutation equivalent in Liu and Liu (Des Codes Cryptogr 91:695–708, 2023). As a result, the security parameter for a 2-sided group LCP (<i>C</i>, <i>D</i>) of codes is simply <i>d</i>(<i>C</i>). Towards this, we deliver an elementary proof of the fact that for a linear complementary pair of codes (<i>C</i>, <i>D</i>), where <i>C</i> and <i>D</i> are linear codes over finite non-commutative Frobenius rings, under certain conditions, the dual code <span>\\(D^\\perp \\)</span> is equivalent to <i>C</i>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02161-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study linear complementary pairs (LCP) of codes over finite non-commutative local rings. We further provide a necessary and sufficient condition for a pair of codes (CD) to be LCP of codes over finite non-commutative Frobenius rings. The minimum distances d(C) and \(d(D^\perp )\) are defined as the security parameter for an LCP of codes (CD). It was recently demonstrated that if C and D are both 2-sided LCP of group codes over a finite commutative Frobenius rings, \(D^\perp \) and C are permutation equivalent in Liu and Liu (Des Codes Cryptogr 91:695–708, 2023). As a result, the security parameter for a 2-sided group LCP (CD) of codes is simply d(C). Towards this, we deliver an elementary proof of the fact that for a linear complementary pair of codes (CD), where C and D are linear codes over finite non-commutative Frobenius rings, under certain conditions, the dual code \(D^\perp \) is equivalent to C.

有限非交换弗罗本尼斯环上的线性互补对码
本文研究了有限非交换局部环上的编码线性互补对(LCP)。我们进一步提供了一对码(C, D)成为有限非交换弗罗贝尼斯环上的线性互补码的必要条件和充分条件。最小距离 d(C) 和 \(d(D^\perp )\) 被定义为代码 (C, D) 的 LCP 的安全参数。最近,Liu 和 Liu (Des Codes Cryptogr 91:695-708, 2023)证明,如果 C 和 D 都是有限交换弗罗贝尼斯环上群码的双面 LCP,那么 \(D^\perp \) 和 C 是等价的。因此,代码的双面组 LCP (C, D) 的安全参数就是 d(C)。为此,我们提供了一个基本证明:对于一对线性互补码(C, D),其中 C 和 D 是有限非交换弗罗贝尼斯环上的线性码,在某些条件下,对偶码 \(D^\perp \) 等同于 C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信