{"title":"Linear complementary pairs of codes over a finite non-commutative Frobenius ring","authors":"Sanjit Bhowmick, Xiusheng Liu","doi":"10.1007/s12190-024-02161-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study linear complementary pairs (LCP) of codes over finite non-commutative local rings. We further provide a necessary and sufficient condition for a pair of codes (<i>C</i>, <i>D</i>) to be LCP of codes over finite non-commutative Frobenius rings. The minimum distances <i>d</i>(<i>C</i>) and <span>\\(d(D^\\perp )\\)</span> are defined as the security parameter for an LCP of codes (<i>C</i>, <i>D</i>). It was recently demonstrated that if <i>C</i> and <i>D</i> are both 2-sided LCP of group codes over a finite commutative Frobenius rings, <span>\\(D^\\perp \\)</span> and <i>C</i> are permutation equivalent in Liu and Liu (Des Codes Cryptogr 91:695–708, 2023). As a result, the security parameter for a 2-sided group LCP (<i>C</i>, <i>D</i>) of codes is simply <i>d</i>(<i>C</i>). Towards this, we deliver an elementary proof of the fact that for a linear complementary pair of codes (<i>C</i>, <i>D</i>), where <i>C</i> and <i>D</i> are linear codes over finite non-commutative Frobenius rings, under certain conditions, the dual code <span>\\(D^\\perp \\)</span> is equivalent to <i>C</i>.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02161-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study linear complementary pairs (LCP) of codes over finite non-commutative local rings. We further provide a necessary and sufficient condition for a pair of codes (C, D) to be LCP of codes over finite non-commutative Frobenius rings. The minimum distances d(C) and \(d(D^\perp )\) are defined as the security parameter for an LCP of codes (C, D). It was recently demonstrated that if C and D are both 2-sided LCP of group codes over a finite commutative Frobenius rings, \(D^\perp \) and C are permutation equivalent in Liu and Liu (Des Codes Cryptogr 91:695–708, 2023). As a result, the security parameter for a 2-sided group LCP (C, D) of codes is simply d(C). Towards this, we deliver an elementary proof of the fact that for a linear complementary pair of codes (C, D), where C and D are linear codes over finite non-commutative Frobenius rings, under certain conditions, the dual code \(D^\perp \) is equivalent to C.
期刊介绍:
JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.