{"title":"Numerical/experimental investigation of the effect of the laser treatment on the thickness distribution of a magnesium superplastically formed part","authors":"Angela Cusanno, Pasquale Guglielmi, Donato Sorgente, Gianfranco Palumbo","doi":"10.1007/s40436-024-00497-x","DOIUrl":null,"url":null,"abstract":"<p>The growing need for high-performance components in terms of shape and mechanical properties encourages the adoption of integrated technological solutions. In the present work, a novel methodology for affecting the superplastic behaviour and, in turn, the thickness distribution of magnesium alloy components is proposed. Through heat treatments using a CO<sub>2</sub> laser, the grain size was locally changed, thus modifying the superplastic behaviour in a predefined area of the blank. Both the grain coarsening produced by the laser heat treatment and the superplastic forming of the heat treated blank were simulated using a finite element model, which allowed to set the related process parameters for the manufacturing of the investigated case study (a truncated cone). The thermal finite element model of the laser heat treatment, calibrated using the experimental temperature evolutions acquired in specific areas during the heat treatment, was used to evaluate the influence of process parameters on the grain size evolution. The laser heat treatment was able to significantly promote the grain growth, increasing the mean grain size from about 8 µm to twice (about 17 µm). The resulting grain size distributions were implemented in the mechanical finite element model of the superplastic forming process and the combination of laser parameters which allowed to obtain the most uniform thickness distribution on the final component was finally experimentally reproduced and measured for validation purposes. Even in the case of the laboratory scale application, characterised by quite small dimensions, the proposed approach revealed to be effective, to improving the thinning factor (<i>t</i><sub>MIN</sub>/<i>t</i><sub>AVG</sub>) of the formed part from 0.85 to 0.89, and providing an increase in the thickness uniformity of about 4.7%.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00497-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The growing need for high-performance components in terms of shape and mechanical properties encourages the adoption of integrated technological solutions. In the present work, a novel methodology for affecting the superplastic behaviour and, in turn, the thickness distribution of magnesium alloy components is proposed. Through heat treatments using a CO2 laser, the grain size was locally changed, thus modifying the superplastic behaviour in a predefined area of the blank. Both the grain coarsening produced by the laser heat treatment and the superplastic forming of the heat treated blank were simulated using a finite element model, which allowed to set the related process parameters for the manufacturing of the investigated case study (a truncated cone). The thermal finite element model of the laser heat treatment, calibrated using the experimental temperature evolutions acquired in specific areas during the heat treatment, was used to evaluate the influence of process parameters on the grain size evolution. The laser heat treatment was able to significantly promote the grain growth, increasing the mean grain size from about 8 µm to twice (about 17 µm). The resulting grain size distributions were implemented in the mechanical finite element model of the superplastic forming process and the combination of laser parameters which allowed to obtain the most uniform thickness distribution on the final component was finally experimentally reproduced and measured for validation purposes. Even in the case of the laboratory scale application, characterised by quite small dimensions, the proposed approach revealed to be effective, to improving the thinning factor (tMIN/tAVG) of the formed part from 0.85 to 0.89, and providing an increase in the thickness uniformity of about 4.7%.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.