{"title":"Effects of Metallization Degree of DRI on the Yield and CO2 Emission in Reduction Shaft Furnace Process","authors":"Yulu Zhou, Xin Jiang, Xiaoai Wang, Haiyan Zheng, Qiangjian Gao, Fengman Shen","doi":"10.1007/s40831-024-00824-3","DOIUrl":null,"url":null,"abstract":"<p>Reduction shaft furnace process is one of the future directions for low-carbon ironmaking. Different parameters can affect the yield and CO<sub>2</sub> emissions. In the present work, the effect of metallization degree (MD) of direct reduced iron (DRI) on the yield and CO<sub>2</sub> emission in reduction shaft furnace process was calculated by thermodynamics, considering the partial oxidation of coke oven gas (COG). The results indicate that (1) at a reduction temperature of 850 °C and an MD of 90%, COG partial oxidation in shaft furnace can increase DRI yield by 0.266 kg/100mol COG and reduce CO<sub>2</sub> emissions by 72.664 kg/t-DRI compared to heating furnace; (2) reducing reduction temperature and MD will increase DRI yield and reduce CO<sub>2</sub> emission. At 800 °C with a 90% MD, the highest DRI yield (2.599 kg/100mol COG) and lowest CO<sub>2</sub> emission (626.406 kg/t-DRI) were achieved, which mark a significant 0.138 kg/100mol COG increase in DRI yield and a notable 43.331 kg/t-DRI decrease in CO<sub>2</sub> emission compared to 950 °C with a 100% MD; (3) high CO<sub>2</sub> removal rates from the top gas not only slightly reduces the heat load of the heating furnace but also provides more heat and reducing gas for top gas recycling. The results of this study may provide guidance in selecting optimal parameters for practical shaft furnace processes and reducing CO<sub>2</sub> emissions.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"169 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00824-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reduction shaft furnace process is one of the future directions for low-carbon ironmaking. Different parameters can affect the yield and CO2 emissions. In the present work, the effect of metallization degree (MD) of direct reduced iron (DRI) on the yield and CO2 emission in reduction shaft furnace process was calculated by thermodynamics, considering the partial oxidation of coke oven gas (COG). The results indicate that (1) at a reduction temperature of 850 °C and an MD of 90%, COG partial oxidation in shaft furnace can increase DRI yield by 0.266 kg/100mol COG and reduce CO2 emissions by 72.664 kg/t-DRI compared to heating furnace; (2) reducing reduction temperature and MD will increase DRI yield and reduce CO2 emission. At 800 °C with a 90% MD, the highest DRI yield (2.599 kg/100mol COG) and lowest CO2 emission (626.406 kg/t-DRI) were achieved, which mark a significant 0.138 kg/100mol COG increase in DRI yield and a notable 43.331 kg/t-DRI decrease in CO2 emission compared to 950 °C with a 100% MD; (3) high CO2 removal rates from the top gas not only slightly reduces the heat load of the heating furnace but also provides more heat and reducing gas for top gas recycling. The results of this study may provide guidance in selecting optimal parameters for practical shaft furnace processes and reducing CO2 emissions.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.