Felipe Fernandes Barbosa, Sibele B. C. Pergher, Tiago Pinheiro Braga
{"title":"Synergistic effects on Cu, Zn and Al-based catalyst: tracking the change of active sites during glycerol dehydration","authors":"Felipe Fernandes Barbosa, Sibele B. C. Pergher, Tiago Pinheiro Braga","doi":"10.1007/s43153-024-00480-w","DOIUrl":null,"url":null,"abstract":"<p>The highly selective reaction concerning catalytic glycerol dehydration to acetol was studied using Zn, Al and Cu oxide catalysts. The diffractograms and Raman spectroscopy revealed the presence of Al<sub>2</sub>O<sub>3</sub>, ZnO, CuO, ZnAl<sub>2</sub>O<sub>4</sub> and CuAl<sub>2</sub>O<sub>4</sub> phases with crystallite nanometer size (8–22 nm). <sup>Al</sup>NMR profiles showed the octahedral, pentacoordinate and tetrahedral coordination of the Al species The redox properties obtained by TPR indicated that at 250 °C, due to SMSI effects, the copper phase is reduced and ZnO is more resistant to reduction while alumina is metastable. The N<sub>2</sub> adsorption/desorption isotherms exhibited the formation of materials in the micro-mesopore range with specific surface area between 90 and 224 m<sup>2</sup> g<sup>−1</sup>. The SEM micrographs showed a sponge-like morphology with cavity sizes between 60 and 70 nm. The best catalytic performance occurred with average yield and selectivity to acetol of 26% and 97%, respectively. The catalyst was quite selective to acetol during reuse tests and was almost completely reactivated after regeneration. The ex-situ analyzes investigated the changes that occurred in the Cu<sup>n+</sup> sites during the reaction, which confirmed the sintering of the copper species by increasing the crystallite size from 25.3 to 36.3 nm. The simple computational theoretical study identified the most exposed sites in planes (hkl), supporting the proposed mechanism. Considering that they are little explored, a brief discussion on the mechanisms involved in the catalyst deactivation by coke was also proposed. Thus, the presence of Cu<sup>0</sup> and Cu<sup>+</sup> sites combined with Zn–Al species and their synergy enhances the high selectivity and yield to acetol, while unreduced Cu<sup>2+</sup> has inferior catalytic performance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00480-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The highly selective reaction concerning catalytic glycerol dehydration to acetol was studied using Zn, Al and Cu oxide catalysts. The diffractograms and Raman spectroscopy revealed the presence of Al2O3, ZnO, CuO, ZnAl2O4 and CuAl2O4 phases with crystallite nanometer size (8–22 nm). AlNMR profiles showed the octahedral, pentacoordinate and tetrahedral coordination of the Al species The redox properties obtained by TPR indicated that at 250 °C, due to SMSI effects, the copper phase is reduced and ZnO is more resistant to reduction while alumina is metastable. The N2 adsorption/desorption isotherms exhibited the formation of materials in the micro-mesopore range with specific surface area between 90 and 224 m2 g−1. The SEM micrographs showed a sponge-like morphology with cavity sizes between 60 and 70 nm. The best catalytic performance occurred with average yield and selectivity to acetol of 26% and 97%, respectively. The catalyst was quite selective to acetol during reuse tests and was almost completely reactivated after regeneration. The ex-situ analyzes investigated the changes that occurred in the Cun+ sites during the reaction, which confirmed the sintering of the copper species by increasing the crystallite size from 25.3 to 36.3 nm. The simple computational theoretical study identified the most exposed sites in planes (hkl), supporting the proposed mechanism. Considering that they are little explored, a brief discussion on the mechanisms involved in the catalyst deactivation by coke was also proposed. Thus, the presence of Cu0 and Cu+ sites combined with Zn–Al species and their synergy enhances the high selectivity and yield to acetol, while unreduced Cu2+ has inferior catalytic performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.