On groups interpretable in various valued fields

Yatir Halevi, Assaf Hasson, Ya’acov Peterzil
{"title":"On groups interpretable in various valued fields","authors":"Yatir Halevi, Assaf Hasson, Ya’acov Peterzil","doi":"10.1007/s00029-024-00946-2","DOIUrl":null,"url":null,"abstract":"<p>We study infinite groups interpretable in three families of valued fields: <i>V</i>-minimal, power bounded <i>T</i>-convex, and <i>p</i>-adically closed fields. We show that every such group <i>G</i> has unbounded exponent and that if <i>G</i> is dp-minimal then it is abelian-by-finite. Along the way, we associate with any infinite interpretable group an infinite type-definable subgroup which is definably isomorphic to a group in one of four distinguished sorts: the underlying valued field <i>K</i>, its residue field <span>\\({\\textbf {k}}\\)</span> (when infinite), its value group <span>\\(\\Gamma \\)</span>, or <span>\\(K/\\mathcal {O}\\)</span>, where <span>\\(\\mathcal {O}\\)</span> is the valuation ring. Our work uses and extends techniques developed in Halevi et al. (Adv Math 404:108408, 2022) to circumvent elimination of imaginaries.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00946-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study infinite groups interpretable in three families of valued fields: V-minimal, power bounded T-convex, and p-adically closed fields. We show that every such group G has unbounded exponent and that if G is dp-minimal then it is abelian-by-finite. Along the way, we associate with any infinite interpretable group an infinite type-definable subgroup which is definably isomorphic to a group in one of four distinguished sorts: the underlying valued field K, its residue field \({\textbf {k}}\) (when infinite), its value group \(\Gamma \), or \(K/\mathcal {O}\), where \(\mathcal {O}\) is the valuation ring. Our work uses and extends techniques developed in Halevi et al. (Adv Math 404:108408, 2022) to circumvent elimination of imaginaries.

关于可在各种值域中解释的群
我们研究了可在三个有价域中解释的无限群:V-最小域、幂有界 T-凸域和 p-adically 闭域。我们证明,每一个这样的群 G 都具有无界指数,而且如果 G 是 dp 最小群,那么它就是无边群。在此过程中,我们将无限可解释群与一个无限类型定义子群联系起来,这个子群与四个不同类型中的一个群是同构的:底层值域 K、它的残差域 \({\textbf{k}}\)(当无限时)、它的值群 \(\Gamma\)或 \(K/\mathcal{O}\),其中 \(\mathcal{O}\)是值环。我们的工作使用并扩展了哈勒维等人(Adv Math 404:108408, 2022)开发的技术,以规避消除想象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信