Special representatives of complexified Kähler classes

Carlo Scarpa, Jacopo Stoppa
{"title":"Special representatives of complexified Kähler classes","authors":"Carlo Scarpa, Jacopo Stoppa","doi":"10.1007/s00029-024-00955-1","DOIUrl":null,"url":null,"abstract":"<p>Motivated by constructions appearing in mirror symmetry, we study special representatives of complexified Kähler classes, which extend the notions of constant scalar curvature and extremal representatives for usual Kähler classes. In particular, we provide a moment map interpretation, discuss a possible correspondence with compactified Landau–Ginzburg models, and prove existence results for such special complexified Kähler forms and their large volume limits in certain toric cases.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"169 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00955-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by constructions appearing in mirror symmetry, we study special representatives of complexified Kähler classes, which extend the notions of constant scalar curvature and extremal representatives for usual Kähler classes. In particular, we provide a moment map interpretation, discuss a possible correspondence with compactified Landau–Ginzburg models, and prove existence results for such special complexified Kähler forms and their large volume limits in certain toric cases.

Abstract Image

复杂化凯勒类的特殊代表
受镜像对称中出现的构造的启发,我们研究了复杂化凯勒类的特殊代表,它们扩展了通常凯勒类的恒定标量曲率和极值代表的概念。特别是,我们提供了矩图解释,讨论了与紧凑化兰道-金兹堡模型的可能对应关系,并证明了这种特殊复杂化凯勒形式及其在某些环状情况下的大体积极限的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信