{"title":"An inertial self-adaptive algorithm for solving split feasibility problems and fixed point problems in the class of demicontractive mappings","authors":"Vasile Berinde","doi":"10.1186/s13660-024-03155-9","DOIUrl":null,"url":null,"abstract":"We propose a hybrid inertial self-adaptive algorithm for solving the split feasibility problem and fixed point problem in the class of demicontractive mappings. Our results are very general and extend several related results existing in the literature from the class of nonexpansive or quasi-nonexpansive mappings to the larger class of demicontractive mappings. Examples to illustrate numerically the effectiveness of the new analytical results are presented.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"154 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03155-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a hybrid inertial self-adaptive algorithm for solving the split feasibility problem and fixed point problem in the class of demicontractive mappings. Our results are very general and extend several related results existing in the literature from the class of nonexpansive or quasi-nonexpansive mappings to the larger class of demicontractive mappings. Examples to illustrate numerically the effectiveness of the new analytical results are presented.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.