Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin
{"title":"Molecular dynamics insights on the self-interstitial diffusion in α-Beryllium","authors":"Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin","doi":"10.1088/1361-651x/ad5a2a","DOIUrl":null,"url":null,"abstract":"Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad5a2a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.