A Bifurcation Lemma for Invariant Subspaces

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
John M. Neuberger, Nándor Sieben, James W. Swift
{"title":"A Bifurcation Lemma for Invariant Subspaces","authors":"John M. Neuberger, Nándor Sieben, James W. Swift","doi":"10.1137/23m1595540","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1610-1635, June 2024. <br/> Abstract.The bifurcation from a simple eigenvalue (BSE) theorem is the foundation of steady-state bifurcation theory for one-parameter families of functions. When eigenvalues of multiplicity greater than one are caused by symmetry, the equivariant branching lemma (EBL) can often be applied to predict the branching of solutions. The EBL can be interpreted as the application of the BSE theorem to a fixed point subspace. There are functions which have invariant linear subspaces that are not caused by symmetry. For example, networks of identical coupled cells often have such invariant subspaces. We present a generalization of the EBL, where the BSE theorem is applied to nested invariant subspaces. We call this the bifurcation lemma for invariant subspaces (BLIS). We give several examples of bifurcations and determine if BSE, EBL, or BLIS applies. We extend our previous automated bifurcation analysis algorithms to use the BLIS to simplify and improve the detection of branches created at bifurcations.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1595540","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1610-1635, June 2024.
Abstract.The bifurcation from a simple eigenvalue (BSE) theorem is the foundation of steady-state bifurcation theory for one-parameter families of functions. When eigenvalues of multiplicity greater than one are caused by symmetry, the equivariant branching lemma (EBL) can often be applied to predict the branching of solutions. The EBL can be interpreted as the application of the BSE theorem to a fixed point subspace. There are functions which have invariant linear subspaces that are not caused by symmetry. For example, networks of identical coupled cells often have such invariant subspaces. We present a generalization of the EBL, where the BSE theorem is applied to nested invariant subspaces. We call this the bifurcation lemma for invariant subspaces (BLIS). We give several examples of bifurcations and determine if BSE, EBL, or BLIS applies. We extend our previous automated bifurcation analysis algorithms to use the BLIS to simplify and improve the detection of branches created at bifurcations.
不变子空间的分岔定理
SIAM 应用动力系统学报》第 23 卷第 2 期第 1610-1635 页,2024 年 6 月。 摘要:简单特征值分岔(BSE)定理是单参数函数族稳态分岔理论的基础。当对称性导致特征值的多重性大于 1 时,通常可以应用等变分支两难(Equivariant branching lemma,EBL)来预测解的分支。EBL 可以解释为 BSE 定点子空间定理的应用。有些函数的不变线性子空间不是由对称性引起的。例如,完全相同的耦合单元网络通常具有这样的不变子空间。我们提出了对 EBL 的一种概括,即将 BSE 定理应用于嵌套不变子空间。我们称其为不变子空间分岔稃(BLIS)。我们给出了几个分岔的例子,并确定 BSE、EBL 或 BLIS 是否适用。我们扩展了之前的自动分岔分析算法,使用 BLIS 简化并改进了对分岔处产生的分支的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信