{"title":"On the Relation between Infinitesimal Shape Response Curves and Phase-Amplitude Reduction for Single and Coupled Limit-Cycle Oscillators","authors":"Max Kreider, Peter J. Thomas","doi":"10.1137/23m1575159","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1636-1676, June 2024. <br/> Abstract.Phase reduction is a well-established method to study weakly driven and weakly perturbed oscillators. Traditional phase-reduction approaches characterize the perturbed system dynamics solely in terms of the timing of the oscillations. In the case of large perturbations, the introduction of amplitude (isostable) coordinates improves the accuracy of the phase description by providing a sense of distance from the underlying limit cycle. Importantly, phase-amplitude coordinates allow for the study of both the timing and shape of system oscillations. A parallel tool is the infinitesimal shape response curve (iSRC), a variational method that characterizes the shape change of a limit-cycle oscillator under sustained perturbation. Despite the importance of oscillation amplitude in a wide range of physical systems, systematic studies on the shape change of oscillations remain scarce. Both phase-amplitude coordinates and the iSRC represent methods to analyze oscillation shape change, yet a relationship between the two has not been previously explored. In this work, we establish the iSRC and phase-amplitude coordinates as complementary tools to study oscillation amplitude. We extend existing iSRC theory and specify conditions under which a general class of systems can be analyzed by the joint iSRC phase-amplitude approach. We show that the iSRC takes on a dramatically simple form in phase-amplitude coordinates, and directly relate the phase and isostable response curves to the iSRC. We apply our theory to weakly perturbed single oscillators, and to study the synchronization and entrainment of coupled oscillators.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1575159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1636-1676, June 2024. Abstract.Phase reduction is a well-established method to study weakly driven and weakly perturbed oscillators. Traditional phase-reduction approaches characterize the perturbed system dynamics solely in terms of the timing of the oscillations. In the case of large perturbations, the introduction of amplitude (isostable) coordinates improves the accuracy of the phase description by providing a sense of distance from the underlying limit cycle. Importantly, phase-amplitude coordinates allow for the study of both the timing and shape of system oscillations. A parallel tool is the infinitesimal shape response curve (iSRC), a variational method that characterizes the shape change of a limit-cycle oscillator under sustained perturbation. Despite the importance of oscillation amplitude in a wide range of physical systems, systematic studies on the shape change of oscillations remain scarce. Both phase-amplitude coordinates and the iSRC represent methods to analyze oscillation shape change, yet a relationship between the two has not been previously explored. In this work, we establish the iSRC and phase-amplitude coordinates as complementary tools to study oscillation amplitude. We extend existing iSRC theory and specify conditions under which a general class of systems can be analyzed by the joint iSRC phase-amplitude approach. We show that the iSRC takes on a dramatically simple form in phase-amplitude coordinates, and directly relate the phase and isostable response curves to the iSRC. We apply our theory to weakly perturbed single oscillators, and to study the synchronization and entrainment of coupled oscillators.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.