The higher algebra of weighted colimits

Hadrian Heine
{"title":"The higher algebra of weighted colimits","authors":"Hadrian Heine","doi":"arxiv-2406.08925","DOIUrl":null,"url":null,"abstract":"We develop a theory of weighted colimits in the framework of weakly\nbi-enriched $\\infty$-categories, an extension of Lurie's notion of enriched\n$\\infty$-categories. We prove an existence result for weighted colimits, study\nweighted colimits of diagrams of enriched functors, express weighted colimits\nvia enriched coends, characterize the enriched $\\infty$-category of enriched\npresheaves as the free cocompletion under weighted colimits and develop a\ntheory of universally adjoining weighted colimits to an enriched\n$\\infty$-category. We use the latter technique to construct for every\npresentably $\\mathbb{E}_{k+1}$-monoidal $\\infty$-category $\\mathcal{V}$ for $1\n\\leq k \\leq \\infty$ and class $\\mathcal{H}$ of $\\mathcal{V}$-weights, with\nrespect to which weighted colimits are defined, a presentably\n$\\mathbb{E}_k$-monoidal structure on the $\\infty$-category of\n$\\mathcal{V}$-enriched $\\infty$-categories that admit $\\mathcal{H}$-weighted\ncolimits. Varying $\\mathcal{H}$ this $\\mathbb{E}_k$-monoidal structure\ninterpolates between the tensor product for $\\mathcal{V}$-enriched\n$\\infty$-categories and the relative tensor product for $\\infty$-categories\npresentably left tensored over $\\mathcal{V}$. As an application we prove that\nforming $\\mathcal{V}$-enriched presheaves is $\\mathbb{E}_k$-monoidal, construct\na $\\mathcal{V}$-enriched version of Day-convolution and give a new construction\nof the tensor product for $\\infty$-categories presentably left tensored over\n$\\mathcal{V}$ as a $\\mathcal{V}$-enriched localization of Day-convolution. As\nfurther applications we construct a tensor product for Cauchy-complete\n$\\mathcal{V}$-enriched $\\infty$-categories, a tensor product for\n$(\\infty,2)$-categories with (op)lax colimits and a tensor product for stable\n$(\\infty,n)$-categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of weighted colimits in the framework of weakly bi-enriched $\infty$-categories, an extension of Lurie's notion of enriched $\infty$-categories. We prove an existence result for weighted colimits, study weighted colimits of diagrams of enriched functors, express weighted colimits via enriched coends, characterize the enriched $\infty$-category of enriched presheaves as the free cocompletion under weighted colimits and develop a theory of universally adjoining weighted colimits to an enriched $\infty$-category. We use the latter technique to construct for every presentably $\mathbb{E}_{k+1}$-monoidal $\infty$-category $\mathcal{V}$ for $1 \leq k \leq \infty$ and class $\mathcal{H}$ of $\mathcal{V}$-weights, with respect to which weighted colimits are defined, a presentably $\mathbb{E}_k$-monoidal structure on the $\infty$-category of $\mathcal{V}$-enriched $\infty$-categories that admit $\mathcal{H}$-weighted colimits. Varying $\mathcal{H}$ this $\mathbb{E}_k$-monoidal structure interpolates between the tensor product for $\mathcal{V}$-enriched $\infty$-categories and the relative tensor product for $\infty$-categories presentably left tensored over $\mathcal{V}$. As an application we prove that forming $\mathcal{V}$-enriched presheaves is $\mathbb{E}_k$-monoidal, construct a $\mathcal{V}$-enriched version of Day-convolution and give a new construction of the tensor product for $\infty$-categories presentably left tensored over $\mathcal{V}$ as a $\mathcal{V}$-enriched localization of Day-convolution. As further applications we construct a tensor product for Cauchy-complete $\mathcal{V}$-enriched $\infty$-categories, a tensor product for $(\infty,2)$-categories with (op)lax colimits and a tensor product for stable $(\infty,n)$-categories.
加权冒顶的高等代数
我们在弱偏富集$\infty$类的框架内发展了加权冒点理论,这是对卢里的富集$\infty$类概念的扩展。我们证明了加权余弦的存在性结果,研究了富集函子图的加权余弦,通过富集余弦表达了加权余弦,描述了富集预波的富集$\infty$-类作为加权余弦下的自由共包的特征,并发展了普遍邻接富集$\infty$-类的加权余弦的理论。我们使用后一种技术来为1\leq k \leq\infty$和$mathcal{V}$-weights的类$\mathcal{H}$构建每个现存的$\mathbb{E}_{k+1}$-单元$infty$-类$\mathcal{V}$、相对于定义了加权 colimits 的 $\mathcal{V}$ 类,在允许 $\mathcal{H}$ 加权 colimits 的 $\infty$ 类上有一个现成的 $\mathbb{E}_k$ 单元结构。随着$\mathcal{H}$的变化,这个$\mathbb{E}_k$单元结构会在为\mathcal{V}$富集的$\infty$范畴的张量积与为\infty$范畴在$\mathcal{V}$上呈现出的左张量的相对张量积之间进行调节。作为一个应用,我们证明了形成$\mathcal{V}$-enriched presheaves是$\mathbb{E}_k$-monoidal的,构造了一个$\mathcal{V}$-enriched版本的Day-convolution,并给出了一个新的构造,即作为一个$\mathcal{V}$-enriched localization of Day-convolution的$\infty$-categories presentably left tensored over$\mathcal{V}$ 的张量积。作为进一步的应用,我们为Cauchy-complete$\mathcal{V}$-enriched $\infty$-categories构造了一个张量积,为具有(op)lax colimits的$(\infty,2)$-categories构造了一个张量积,为稳定的$(\infty,n)$-categories构造了一个张量积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信