On bi-enriched $\infty$-categories

Hadrian Heine
{"title":"On bi-enriched $\\infty$-categories","authors":"Hadrian Heine","doi":"arxiv-2406.09832","DOIUrl":null,"url":null,"abstract":"We extend Lurie's definition of enriched $\\infty$-categories to notions of\nleft enriched, right enriched and bi-enriched $\\infty$-categories, which\ngeneralize the concepts of closed left tensored, right tensored and bitensored\n$\\infty$-categories and share many desirable features with them. We use\nbi-enriched $\\infty$-categories to endow the $\\infty$-category of enriched\nfunctors with enrichment that generalizes both the internal hom of the tensor\nproduct of enriched $\\infty$-categories when the latter exists, and the free\ncocompletion under colimits and tensors. As an application we prove an end\nformula for morphism objects of enriched $\\infty$-categories of enriched\nfunctors and compute the monad for enriched functors. We build our theory\nclosely related to Lurie's higher algebra: we construct an enriched\n$\\infty$-category of enriched presheaves via the enveloping tensored\n$\\infty$-category, construct transfer of enrichment via scalar extension of\nbitensored $\\infty$-categories, and construct enriched Kan-extensions via\noperadic Kan extensions. In particular, we develop an independent theory of\nenriched $\\infty$-categories for Lurie's model of enriched $\\infty$-categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"153 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend Lurie's definition of enriched $\infty$-categories to notions of left enriched, right enriched and bi-enriched $\infty$-categories, which generalize the concepts of closed left tensored, right tensored and bitensored $\infty$-categories and share many desirable features with them. We use bi-enriched $\infty$-categories to endow the $\infty$-category of enriched functors with enrichment that generalizes both the internal hom of the tensor product of enriched $\infty$-categories when the latter exists, and the free cocompletion under colimits and tensors. As an application we prove an end formula for morphism objects of enriched $\infty$-categories of enriched functors and compute the monad for enriched functors. We build our theory closely related to Lurie's higher algebra: we construct an enriched $\infty$-category of enriched presheaves via the enveloping tensored $\infty$-category, construct transfer of enrichment via scalar extension of bitensored $\infty$-categories, and construct enriched Kan-extensions via operadic Kan extensions. In particular, we develop an independent theory of enriched $\infty$-categories for Lurie's model of enriched $\infty$-categories.
关于双丰富 $infty$ 类别
我们将卢里关于富集$\infty$-类的定义扩展为左富集、右富集和双富集$\infty$-类的概念,它们概括了封闭的左张量、右张量和位张量$\infty$-类的概念,并与它们共享许多理想的特征。我们使用比充实的$infty$-范畴来赋予充实函数的$infty$-范畴以充实性,这种充实性既概括了充实的$infty$-范畴的张量积的内部同(当后者存在时),也概括了 colimits 和张量下的自由补全。作为应用,我们证明了富集函数的富集$\infty$-类的态对象的终式,并计算了富集函数的单体。特别是,我们为卢里的丰富 $\infty$ 类别模型发展了一个独立的丰富 $\infty$ 类别理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信