Inner automorphisms as 2-cells

Pieter Hofstra, Martti Karvonen
{"title":"Inner automorphisms as 2-cells","authors":"Pieter Hofstra, Martti Karvonen","doi":"arxiv-2406.13647","DOIUrl":null,"url":null,"abstract":"Abstract inner automorphisms can be used to promote any category into a\n2-category, and we study two-dimensional limits and colimits in the resulting\n2-categories. Existing connected colimits and limits in the starting category\nbecome two-dimensional colimits and limits under fairly general conditions.\nUnder the same conditions, colimits in the underlying category can be used to\nbuild many notable two-dimensional colimits such as coequifiers and\ncoinserters. In contrast, disconnected colimits or genuinely 2-categorical\nlimits such as inserters and equifiers and cotensors cannot exist unless no\nnontrivial abstract inner automorphisms exist and the resulting 2-category is\nlocally discrete. We also study briefly when an ordinary functor can be\nextended to a 2-functor between the resulting 2-categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract inner automorphisms can be used to promote any category into a 2-category, and we study two-dimensional limits and colimits in the resulting 2-categories. Existing connected colimits and limits in the starting category become two-dimensional colimits and limits under fairly general conditions. Under the same conditions, colimits in the underlying category can be used to build many notable two-dimensional colimits such as coequifiers and coinserters. In contrast, disconnected colimits or genuinely 2-categorical limits such as inserters and equifiers and cotensors cannot exist unless no nontrivial abstract inner automorphisms exist and the resulting 2-category is locally discrete. We also study briefly when an ordinary functor can be extended to a 2-functor between the resulting 2-categories.
作为 2 单元的内自变形
抽象内自动形可以用来把任何范畴提升为二维范畴,我们研究由此产生的二维范畴中的二维极限和收敛。在相当普遍的条件下,起始范畴中现有的连通冒点和极限都可以成为二维冒点和极限。与此相反,除非存在非非对称的抽象内自动态,而且所得到的二维范畴是局部离散的,否则断开的收敛性或真正的二维收敛性(如插入器、等价器和同调器)是不存在的。我们还简要地研究了当一个普通的函子可以扩展为结果2范畴之间的2函子时的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信