{"title":"Inner automorphisms as 2-cells","authors":"Pieter Hofstra, Martti Karvonen","doi":"arxiv-2406.13647","DOIUrl":null,"url":null,"abstract":"Abstract inner automorphisms can be used to promote any category into a\n2-category, and we study two-dimensional limits and colimits in the resulting\n2-categories. Existing connected colimits and limits in the starting category\nbecome two-dimensional colimits and limits under fairly general conditions.\nUnder the same conditions, colimits in the underlying category can be used to\nbuild many notable two-dimensional colimits such as coequifiers and\ncoinserters. In contrast, disconnected colimits or genuinely 2-categorical\nlimits such as inserters and equifiers and cotensors cannot exist unless no\nnontrivial abstract inner automorphisms exist and the resulting 2-category is\nlocally discrete. We also study briefly when an ordinary functor can be\nextended to a 2-functor between the resulting 2-categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract inner automorphisms can be used to promote any category into a
2-category, and we study two-dimensional limits and colimits in the resulting
2-categories. Existing connected colimits and limits in the starting category
become two-dimensional colimits and limits under fairly general conditions.
Under the same conditions, colimits in the underlying category can be used to
build many notable two-dimensional colimits such as coequifiers and
coinserters. In contrast, disconnected colimits or genuinely 2-categorical
limits such as inserters and equifiers and cotensors cannot exist unless no
nontrivial abstract inner automorphisms exist and the resulting 2-category is
locally discrete. We also study briefly when an ordinary functor can be
extended to a 2-functor between the resulting 2-categories.