Enriched concepts of regular logic

Jiří Rosický
{"title":"Enriched concepts of regular logic","authors":"Jiří Rosický","doi":"arxiv-2406.12617","DOIUrl":null,"url":null,"abstract":"Building on our previous work on enriched universal algebra, we define a\nnotion of enriched language consisting of function and relation symbols whose\narities are objects of the base of enrichment. In this context, we construct\natomic formulas and define the regular fragment of enriched logic by taking\nconjunctions and existential quantifications of those. We then characterize\nenriched categories of models of regular theories as enriched injectivity\nclasses in the enriched category of structures. These notions rely on the\nchoice of a factorization system on the base of enrichment which will be used\nto interpret relation symbols and existential quantifications.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment. In this context, we construct atomic formulas and define the regular fragment of enriched logic by taking conjunctions and existential quantifications of those. We then characterize enriched categories of models of regular theories as enriched injectivity classes in the enriched category of structures. These notions rely on the choice of a factorization system on the base of enrichment which will be used to interpret relation symbols and existential quantifications.
丰富的正则逻辑概念
基于我们之前在丰富通用代数方面的工作,我们定义了一种由函数和关系符号组成的丰富语言,这些函数和关系符号的实体是丰富基础的对象。在此背景下,我们构建了原子公式,并通过对这些公式的连接和存在定量定义了丰富逻辑的正则片段。然后,我们将正则定理模型的丰富范畴表征为结构丰富范畴中的丰富注入类。这些概念依赖于在充实的基础上选择一个因式分解系统,这个因式分解系统将用来解释关系符号和存在定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信