$\mathrm{Mod}_{\mathbb{H}\mathrm{k}}$-enriched $\infty$-categories are left $\mathbb{H}\mathrm{k}$-module objects of $\mathcal{C}at_{\infty}^{\mathcal{S}p}$ and $\mathcal{C}at_{\infty}^{\mathcal{S}p}$-enriched $\infty$-functors
{"title":"$\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}$-enriched $\\infty$-categories are left $\\mathbb{H}\\mathrm{k}$-module objects of $\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}$ and $\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}$-enriched $\\infty$-functors","authors":"Matteo Doni","doi":"arxiv-2406.15884","DOIUrl":null,"url":null,"abstract":"We establish the feasibility of investigating the theory of\n$\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}$-enriched $\\infty$-categories, where\n$\\mathbb{H}\\mathrm{k}$ is the Eilenberg-Maclane Spectrum associated with a\ncommutative and unitary ring $k$, through the framework of\n$\\mathcal{S}p$-enriched $\\infty$-category theory. In particular, we prove that\nthe $\\infty$-category of $\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}$-enriched\n$\\infty$-categories\n$\\mathcal{C}at_{\\infty}^{\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}}$,\n$\\infty$-category of left $\\mathbb{H}\\mathrm{k}$-module objects of the\n$\\infty$-category of $\\mathcal{S}p$-enriched $\\infty$-categories\n$\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}$\n$\\mathrm{LMod}_{\\mathbb{H}\\mathrm{k}}(\\mathcal{C}at_{\\infty}^{\\mathcal{S}p})$\nand the $\\infty$-category of $\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}$-enriched\n$\\infty$-functors\n$Fun^{\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}}(\\underline{\\underline{\\mathbb{H}\\mathrm{k}}},\\mathcal{C}at_{\\infty}^{\\mathcal{S}p})$\nare equivalent.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the feasibility of investigating the theory of
$\mathrm{Mod}_{\mathbb{H}\mathrm{k}}$-enriched $\infty$-categories, where
$\mathbb{H}\mathrm{k}$ is the Eilenberg-Maclane Spectrum associated with a
commutative and unitary ring $k$, through the framework of
$\mathcal{S}p$-enriched $\infty$-category theory. In particular, we prove that
the $\infty$-category of $\mathrm{Mod}_{\mathbb{H}\mathrm{k}}$-enriched
$\infty$-categories
$\mathcal{C}at_{\infty}^{\mathrm{Mod}_{\mathbb{H}\mathrm{k}}}$,
$\infty$-category of left $\mathbb{H}\mathrm{k}$-module objects of the
$\infty$-category of $\mathcal{S}p$-enriched $\infty$-categories
$\mathcal{C}at_{\infty}^{\mathcal{S}p}$
$\mathrm{LMod}_{\mathbb{H}\mathrm{k}}(\mathcal{C}at_{\infty}^{\mathcal{S}p})$
and the $\infty$-category of $\mathcal{C}at_{\infty}^{\mathcal{S}p}$-enriched
$\infty$-functors
$Fun^{\mathcal{C}at_{\infty}^{\mathcal{S}p}}(\underline{\underline{\mathbb{H}\mathrm{k}}},\mathcal{C}at_{\infty}^{\mathcal{S}p})$
are equivalent.
$mathrm{Mod}_{mathbb{H}\mathrm{k}$-enriched $\infty$-categories are left $mathbb{H}\mathrm{k}$-module objects of $\mathcal{C}at_{infty}^{mathcal{S}p}$ and $\mathcal{C}at_{\infty}^{mathcal{S}p}$-enriched $\infty$-functors