$R\text{-}\mathrm{Mod}$-enriched categories are left $\underline{R}$-module objects of $Cat(\mathbb{A}\mathrm{b})$ and $Cat(\mathbb{A}\mathrm{b})$-enriched functors
{"title":"$R\\text{-}\\mathrm{Mod}$-enriched categories are left $\\underline{R}$-module objects of $Cat(\\mathbb{A}\\mathrm{b})$ and $Cat(\\mathbb{A}\\mathrm{b})$-enriched functors","authors":"Matteo Doni","doi":"arxiv-2406.15887","DOIUrl":null,"url":null,"abstract":"We establish the feasibility of investigating the theory of\n$R\\text{-}\\mathrm{Mod}$-enriched categories, for any commutative and unitary\nring $R$, through the framework of $\\mathbb{A}\\mathrm{b}$-enriched category\ntheory. In particular, we prove that the category of\n$R$-$\\mathrm{Mod}$-enriched categories, $Cat(R$-$\\mathrm{Mod})$, the category\nof $\\underline{R}$-modules inside $Cat(\\mathbb{A}\\mathrm{b})$,\n$\\mathrm{LMod}_{\\underline{R}}(Cat(\\mathbb{A}\\mathrm{b}))$, and the category of\n$Cat(\\mathbb{A}\\mathrm{b})$-enriched functors,\n$Fun^{Cat(\\mathbb{A}\\mathrm{b})}(\\underline{\\underline{R}},Cat(\\mathbb{A}\\mathrm{b}))$\nare equivalent.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the feasibility of investigating the theory of
$R\text{-}\mathrm{Mod}$-enriched categories, for any commutative and unitary
ring $R$, through the framework of $\mathbb{A}\mathrm{b}$-enriched category
theory. In particular, we prove that the category of
$R$-$\mathrm{Mod}$-enriched categories, $Cat(R$-$\mathrm{Mod})$, the category
of $\underline{R}$-modules inside $Cat(\mathbb{A}\mathrm{b})$,
$\mathrm{LMod}_{\underline{R}}(Cat(\mathbb{A}\mathrm{b}))$, and the category of
$Cat(\mathbb{A}\mathrm{b})$-enriched functors,
$Fun^{Cat(\mathbb{A}\mathrm{b})}(\underline{\underline{R}},Cat(\mathbb{A}\mathrm{b}))$
are equivalent.