Kan extendable subcategories and fibrewise topology

Moncef Ghazel
{"title":"Kan extendable subcategories and fibrewise topology","authors":"Moncef Ghazel","doi":"arxiv-2406.18399","DOIUrl":null,"url":null,"abstract":"We use pointwise Kan extensions to generate new subcategories out of old\nones. We investigate the properties of these newly produced categories and give\nsufficient conditions for their cartesian closedness to hold. Our methods are\nof general use. Here we apply them particularly to the study of the properties\nof certain categories of fibrewise topological spaces. In particular, we prove\nthat the categories of fibrewise compactly generated spaces, fibrewise\nsequential spaces and fibrewise Alexandroff spaces are cartesian closed\nprovided that the base space satisfies the right separation axiom.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use pointwise Kan extensions to generate new subcategories out of old ones. We investigate the properties of these newly produced categories and give sufficient conditions for their cartesian closedness to hold. Our methods are of general use. Here we apply them particularly to the study of the properties of certain categories of fibrewise topological spaces. In particular, we prove that the categories of fibrewise compactly generated spaces, fibrewise sequential spaces and fibrewise Alexandroff spaces are cartesian closed provided that the base space satisfies the right separation axiom.
Kan 可扩展子范畴和纤维拓扑学
我们利用点式坎扩展从旧范畴中生成新的子范畴。我们研究了这些新生成的范畴的性质,并给出了它们的笛卡尔封闭性成立的充分条件。我们的方法具有普遍用途。在这里,我们特别将它们应用于研究纤维拓扑空间的某些范畴的性质。特别是,我们证明,只要基空间满足右分离公理,纤维紧凑生成空间、纤维秩空间和纤维亚历山德罗夫空间的范畴都是笛卡尔闭合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信