Yuan Wang, Huaicheng Yan, Zhichen Li, Meng Wang, Kaibo Shi
{"title":"Stabilization of complex-valued neural networks subject to semi-Markov jumping parameters: A dynamic event-triggered protocol","authors":"Yuan Wang, Huaicheng Yan, Zhichen Li, Meng Wang, Kaibo Shi","doi":"10.1002/asjc.3442","DOIUrl":null,"url":null,"abstract":"<p>For continuous-time complex-valued neural networks, this paper addresses the state-feedback stabilization issue via dynamic event-triggered protocol. Aiming at random parameters' switching, semi-Markov jump model surpasses the Markov jump model in terms of its generality, enabling us to effectively capture the occurrence of random abrupt alterations in both the structure and parameters of complex-valued neural networks. To optimize packet transmission, a new dynamic event-based protocol is introduced to judge whether the previous signal transmission continues. The design of this protocol takes into full consideration the imaginary part characteristics of the system, while also integrating the system modes and dynamic variables. Utilizing an appropriate Lyapunov functional that contains auxiliary internal dynamical variables, the desired stability is proposed. Eventually, the effectiveness of theoretical findings is ultimately validated through two numerical simulations.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"26 6","pages":"3002-3013"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3442","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
For continuous-time complex-valued neural networks, this paper addresses the state-feedback stabilization issue via dynamic event-triggered protocol. Aiming at random parameters' switching, semi-Markov jump model surpasses the Markov jump model in terms of its generality, enabling us to effectively capture the occurrence of random abrupt alterations in both the structure and parameters of complex-valued neural networks. To optimize packet transmission, a new dynamic event-based protocol is introduced to judge whether the previous signal transmission continues. The design of this protocol takes into full consideration the imaginary part characteristics of the system, while also integrating the system modes and dynamic variables. Utilizing an appropriate Lyapunov functional that contains auxiliary internal dynamical variables, the desired stability is proposed. Eventually, the effectiveness of theoretical findings is ultimately validated through two numerical simulations.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.