Pierre Del Moral, Shulan Hu, Ajay Jasra, Hamza Ruzayqat, Xinyu Wang
{"title":"Bayesian Parameter Inference for Partially Observed Diffusions using Multilevel Stochastic Runge-Kutta Methods","authors":"Pierre Del Moral, Shulan Hu, Ajay Jasra, Hamza Ruzayqat, Xinyu Wang","doi":"10.1615/int.j.uncertaintyquantification.2024051131","DOIUrl":null,"url":null,"abstract":"We consider the problem of Bayesian estimation of static parameters associated to a partially and discretely observed diffusion process. We assume that the exact transition dynamics of the diffusion process are unavailable, even up-to an unbiased estimator and that one must time-discretize the diffusion process. In such scenarios it has been shown how one can introduce the multilevel Monte Carlo method to reduce the cost to compute\nposterior expected values of the parameters\nfor a pre-specified mean square error (MSE); see \\cite{jasra_bpe_sde}. These afore-mentioned methods rely on upon the Euler-Maruyama discretization scheme which is well-known in numerical analysis to have slow convergence properties. We adapt stochastic Runge-Kutta (SRK) methods for\nBayesian parameter estimation of static parameters for diffusions. This\ncan be implemented in high-dimensions of the diffusion and seemingly under-appreciated in the uncertainty quantification and statistics fields.\nFor a class of diffusions and SRK methods, we consider the estimation of the posterior expectation of the parameters.\nWe prove\nthat to achieve a MSE of $\\mathcal{O}(\\epsilon^2)$, for $\\epsilon>0$ given, the associated work is $\\mathcal{O}(\\epsilon^{-2})$.\nWhilst the latter is achievable for the Milstein scheme, this method is often not applicable for diffusions in dimension larger than two. We also illustrate our methodology in several numerical examples.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051131","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of Bayesian estimation of static parameters associated to a partially and discretely observed diffusion process. We assume that the exact transition dynamics of the diffusion process are unavailable, even up-to an unbiased estimator and that one must time-discretize the diffusion process. In such scenarios it has been shown how one can introduce the multilevel Monte Carlo method to reduce the cost to compute
posterior expected values of the parameters
for a pre-specified mean square error (MSE); see \cite{jasra_bpe_sde}. These afore-mentioned methods rely on upon the Euler-Maruyama discretization scheme which is well-known in numerical analysis to have slow convergence properties. We adapt stochastic Runge-Kutta (SRK) methods for
Bayesian parameter estimation of static parameters for diffusions. This
can be implemented in high-dimensions of the diffusion and seemingly under-appreciated in the uncertainty quantification and statistics fields.
For a class of diffusions and SRK methods, we consider the estimation of the posterior expectation of the parameters.
We prove
that to achieve a MSE of $\mathcal{O}(\epsilon^2)$, for $\epsilon>0$ given, the associated work is $\mathcal{O}(\epsilon^{-2})$.
Whilst the latter is achievable for the Milstein scheme, this method is often not applicable for diffusions in dimension larger than two. We also illustrate our methodology in several numerical examples.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.