{"title":"Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan","authors":"Ben Cameron, Aaron Grubb, Joe Sawada","doi":"10.1007/s00373-024-02808-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of listing all spanning trees of a graph <i>G</i> such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in <i>O</i>(1)-amortized time using <i>O</i>(<i>n</i>) space. Additionally, we present <i>O</i>(<i>n</i>)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02808-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of listing all spanning trees of a graph G such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in O(1)-amortized time using O(n) space. Additionally, we present O(n)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.