{"title":"Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan","authors":"Ben Cameron, Aaron Grubb, Joe Sawada","doi":"10.1007/s00373-024-02808-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of listing all spanning trees of a graph <i>G</i> such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in <i>O</i>(1)-amortized time using <i>O</i>(<i>n</i>) space. Additionally, we present <i>O</i>(<i>n</i>)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02808-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of listing all spanning trees of a graph G such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in O(1)-amortized time using O(n) space. Additionally, we present O(n)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.