Cliques of Orders Three and Four in the Paley-Type Graphs

Pub Date : 2024-06-24 DOI:10.1007/s00373-024-02809-1
Anwita Bhowmik, Rupam Barman
{"title":"Cliques of Orders Three and Four in the Paley-Type Graphs","authors":"Anwita Bhowmik, Rupam Barman","doi":"10.1007/s00373-024-02809-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(n=2^s p_{1}^{\\alpha _{1}}\\cdots p_{k}^{\\alpha _{k}}\\)</span>, where <span>\\(s=0\\)</span> or 1, <span>\\(\\alpha _i\\ge 1\\)</span>, and the distinct primes <span>\\(p_i\\)</span> satisfy <span>\\(p_i\\equiv 1\\pmod {4}\\)</span> for all <span>\\(i=1, \\ldots , k\\)</span>. Let <span>\\(\\mathbb {Z}_n^*\\)</span> denote the group of units in the commutative ring <span>\\(\\mathbb {Z}_n\\)</span>. In a recent paper, we defined the Paley-type graph <span>\\(G_n\\)</span> of order <i>n</i> as the graph whose vertex set is <span>\\(\\mathbb {Z}_n\\)</span> and <i>xy</i> is an edge if <span>\\(x-y\\equiv a^2\\pmod n\\)</span> for some <span>\\(a\\in \\mathbb {Z}_n^*\\)</span>. Computing the number of cliques of a particular order in a Paley graph or its generalizations has been of considerable interest. In our recent paper, for primes <span>\\(p\\equiv 1\\pmod 4\\)</span> and <span>\\(\\alpha \\ge 1\\)</span>, by evaluating certain character sums, we found the number of cliques of order 3 in <span>\\(G_{p^\\alpha }\\)</span> and expressed the number of cliques of order 4 in <span>\\(G_{p^\\alpha }\\)</span> in terms of Jacobi sums. In this article we give combinatorial proofs and find the number of cliques of orders 3 and 4 in <span>\\(G_n\\)</span> for all <i>n</i> for which the graph is defined.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02809-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(n=2^s p_{1}^{\alpha _{1}}\cdots p_{k}^{\alpha _{k}}\), where \(s=0\) or 1, \(\alpha _i\ge 1\), and the distinct primes \(p_i\) satisfy \(p_i\equiv 1\pmod {4}\) for all \(i=1, \ldots , k\). Let \(\mathbb {Z}_n^*\) denote the group of units in the commutative ring \(\mathbb {Z}_n\). In a recent paper, we defined the Paley-type graph \(G_n\) of order n as the graph whose vertex set is \(\mathbb {Z}_n\) and xy is an edge if \(x-y\equiv a^2\pmod n\) for some \(a\in \mathbb {Z}_n^*\). Computing the number of cliques of a particular order in a Paley graph or its generalizations has been of considerable interest. In our recent paper, for primes \(p\equiv 1\pmod 4\) and \(\alpha \ge 1\), by evaluating certain character sums, we found the number of cliques of order 3 in \(G_{p^\alpha }\) and expressed the number of cliques of order 4 in \(G_{p^\alpha }\) in terms of Jacobi sums. In this article we give combinatorial proofs and find the number of cliques of orders 3 and 4 in \(G_n\) for all n for which the graph is defined.

分享
查看原文
帕利型图中的三阶和四阶小群
让(n=2^s p_{1}^{\alpha _{1}}\cdots p_{k}^{\alpha _{k}}\ ),其中(s=0)或1,(\alpha _i\ge 1\ ),以及对于所有(i=1, \ldots , k\ )的不同素数(p_i)满足(p_i/equiv 1\pmod {4}/)。让 \(\mathbb {Z}_n^*\) 表示交换环 \(\mathbb {Z}_n\) 中的单元群。在最近的一篇论文中,我们把阶数为 n 的帕利型图(Paley-type graph \(G_n\))定义为顶点集为 \(\mathbb {Z}_n\) 的图,如果对于某个 \(a\in \mathbb {Z}_n^*\) 来说 \(x-y\equiv a^2\pmod n\) xy 是一条边,那么 \(x-y\equiv a^2\pmod n\) xy 就是一条边。计算帕利图或其广义图中特定阶的小群数一直是人们相当感兴趣的问题。在我们最近的论文中,对于素数 \(p\equiv 1\pmod 4\) 和 \(\alpha \ge 1\) ,通过评估某些特征和,我们发现了 \(G_{p^\alpha }\) 中阶数为 3 的小群数,并用雅可比和表达了 \(G_{p^\alpha }\) 中阶数为 4 的小群数。在这篇文章中,我们给出了组合证明,并找到了对于所有 n 定义了图形的 \(G_n\) 中 3 阶和 4 阶小块的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信