The Eulerian Distribution on the Fixed-Point Free Involutions of the Hyperoctahedral Group Under the Natural Order

IF 0.6 4区 数学 Q3 MATHEMATICS
Lingli Wan, Xiaoqin Gao, Frank Z. K. Li, Jane Y. X. Yang
{"title":"The Eulerian Distribution on the Fixed-Point Free Involutions of the Hyperoctahedral Group Under the Natural Order","authors":"Lingli Wan, Xiaoqin Gao, Frank Z. K. Li, Jane Y. X. Yang","doi":"10.1007/s00373-024-02805-5","DOIUrl":null,"url":null,"abstract":"<p>Two totally order relations are defined on the hyperoctahedral group <span>\\({\\mathfrak {B}}_n\\)</span>. Regarding <span>\\({{\\mathfrak {B}}}_n\\)</span> as a Coxeter group of type <i>B</i>, we always use the natural order. By taking <span>\\({{\\mathfrak {B}}}_n\\)</span> as a color permutation group, it is convenient to use the <i>r</i>-order. Considering <span>\\({{\\mathfrak {B}}}_n\\)</span> as a colored permutation group, Moustakas proved that the Eulerian distribution on the involutions of <span>\\({{\\mathfrak {B}}}_n\\)</span> is unimodal, Cao and Liu proved that it is <span>\\(\\gamma \\)</span>-positive, they also proved that the Eulerian distribution on the fixed-point free involutions of <span>\\({{\\mathfrak {B}}}_n\\)</span> is symmetric, unimodal and <span>\\(\\gamma \\)</span>-positive. In this paper, we prove that the Eulerian distribution on the fixed-point free involutions of <span>\\({{\\mathfrak {B}}}_n\\)</span> is symmetric, unimodal and <span>\\(\\gamma \\)</span>-positive when <span>\\({{\\mathfrak {B}}}_n\\)</span> is viewed as Coxeter group of type <i>B</i>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"165 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02805-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two totally order relations are defined on the hyperoctahedral group \({\mathfrak {B}}_n\). Regarding \({{\mathfrak {B}}}_n\) as a Coxeter group of type B, we always use the natural order. By taking \({{\mathfrak {B}}}_n\) as a color permutation group, it is convenient to use the r-order. Considering \({{\mathfrak {B}}}_n\) as a colored permutation group, Moustakas proved that the Eulerian distribution on the involutions of \({{\mathfrak {B}}}_n\) is unimodal, Cao and Liu proved that it is \(\gamma \)-positive, they also proved that the Eulerian distribution on the fixed-point free involutions of \({{\mathfrak {B}}}_n\) is symmetric, unimodal and \(\gamma \)-positive. In this paper, we prove that the Eulerian distribution on the fixed-point free involutions of \({{\mathfrak {B}}}_n\) is symmetric, unimodal and \(\gamma \)-positive when \({{\mathfrak {B}}}_n\) is viewed as Coxeter group of type B.

自然秩序下超八面体群定点自由旋转的欧拉分布
在超八面体群 \({\mathfrak {B}}_n\) 上定义了两个完全阶关系。把 \({\mathfrak {B}}_n\) 看作 B 型的考斯特群,我们总是使用自然阶。如果把 \({{\mathfrak {B}}_n\) 看作一个颜色置换群,那么使用 r-order 是很方便的。考虑到 \({{\mathfrak {B}}}_n\) 是一个彩色置换群,穆斯塔卡斯证明了 \({{\mathfrak {B}}}_n\) 卷积上的欧拉分布是单峰的、Cao 和 Liu 证明了它是(\gamma \)正的,他们还证明了 \({{\mathfrak {B}}_n\) 的无定点卷积上的欧拉分布是对称的、单模态的和(\gamma \)正的。在本文中,我们证明了当\({{mathfrak {B}}}_n\) 被视为 B 型考克赛特群时,\({{mathfrak {B}}}_n\) 的定点自由渐开线上的欧拉分布是对称的、单模态的和\(\gamma \)-正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信